Литвинцев Юрий Игоревич,

канд. хим. наук, доцент, Ангарский государственный технический университет

e-mail: litvincev_1991@mail.ru

Трапезников Евгений Геннадьевич,

магистрант, Ангарский государственный технический университет e-mail: travolta333@mail.ru

ПРОБЛЕМА ОЧИСТКИ ТОВАРНОГО БЕНЗОЛА ОТ ПРИМЕСЕЙ СЕРЫ НА УСТАНОВКЕ «ПИРОТОЛ»

Litvintsev Yu.I., Trapeznikov E.G

THE PROBLEM OF PURIFICATION OF COMMERCIAL BENZENE FROM SULFUR IMPURITIES AT THE «PYROTOL» UNIT

Аннотация. Предложены различные методы очистки товарного бензола от примесей серы для получения товарного бензола высокой степени чистоты.

Ключевые слова: товарный бензол, сероочистка, установка «Пиротол».

Abstract. Various methods have been proposed for the purification of commercial benzene from sulfur impurities to obtain commercial benzene of a high degree of purity.

Keywords: commercial benzene, desulfurization, plant Pirotol.

Ароматические углеводороды – бензол, толуол, ксилол, относятся к наиболее крупнотоннажным нефтехимическим продуктам. Данные арены являются одним из основных видов сырья промышленности: нефтехимии и основного органического синтеза. Получаемые в различных процессах переработки нефти фракции, в большинстве случаев не являются готовыми товарными продуктами. Они содержат всевозможные примеси, присутствие которых делает эти фракции некондиционными, непригодными для использования. На качество товарного бензола оказывают большое влияние примеси серы в виде тиофенов, меркаптанов, сероводорода. В настоящее время в нефтехимическом производстве высокочистого товарного бензола ведущими процессами является каталитический риформинг и пиролиз бензиновых фракций, которые подвергаются в дальнейшем гидрогенизации с последующим выделением гидрогенизата методом ректификации. Однако наиболее чистый бензол получают в результате деалкилирования алкилароматических углеводородов, например, толуола. Разработано несколько промышленных способов производства бензола методом деалкилирования: термическое гидродеалкилирование, каталитическое гидродеалкилирование и деалкилирование в присутствии окислительных агентов (H₂O, CO₂ и т.д.) [1].

В настоящее время наибольшее распространение получил каталитический вариант гидродеалкилирования [2]. Такой метод получения бензола имеет преимущества перед термическим гидродеалкилированием как по энергозатратам и расходу водорода на производство 1 т продукции, так и по селективности образования бензола. С другой стороны, требования к сырью здесь менее же-

сткие, чем в термическом гидродеалкилировании: допускается небольшое содержание в нем непредельных (до 5%) и сернистых соединений (до 0,01%). Полное удаление указанных примесей осуществляется в ходе каталитического процесса. В настоящее время подобные каталитические технологии реализованы в ряде стран в промышленном масштабе. К ним, в частности, относится процесс «Пиротол» [2]. На установке «Пиротол» выделяют бензол, который далее отгружается как товарный продукт марки бензол нефтяной очищенный. Сырьём процесса является пироконденсат бензол-толуол-ксиольной (БТК) фракции, который с установки гидрогенизации направляется в узел предварительного фракционирования, где происходит выделение БТК фракции. Далее БТК фракция поступает в реакторный узел для процессов гидрогенизации неароматических углеводородов, гидродеалкилирования алкилароматических углеводородов и гидрокрекинга ароматических углеводородов. После вышеперечисленных технологических ступеней деалкилат направляется в узел выделения бензола.

Для повышения качества нефтепродуктов, полученных при первичной перегонке и вторичных процессах, применяют каталитическую очистку. В промышленной практике распространены следующие методы очистки от сернистых соединений в присутствии катализаторов:

- 1. Гидроочистка в присутствии алюмокобальтмолибденовых или алюмоникельмолибденовых катализаторов. Данный процесс позволяет заметно повысить качество получаемого бензола, а именно, сократить содержание тиофена в товарном продукте до 0,5-1,0 ppm [1].
- 2. Очистка с помощью природных бокситов и алюмосиликатных катализаторов. Этот метод целесообразно применять лишь при небольшом содержании серы до 0,2 % масс.
- 3. Каталитическая демеркаптанизация (процесс Мерокс). Данный процесс характеризуется высокой эффективностью содержание меркаптанов снижается до 0,0005 % масс.

ЛИТЕРАТУРА

- 1. **Петров, И.Я.** Получение бензола гидродеалкилированием алкилароматических углеводородов: перспективы развития процессов термического гидродеалкилирования / И.Я. Петров, А.Г. Бяков, Б.Г. Трясунов // Вестник Кузбасского государственного технического университета 2005. номер 1. С. 59-65.
- 2. **Петров, И.Я.** Получение бензола гидродеалкилированием алкилароматических углеводородов: Промышленные каталитические процессы и эффективные катализаторы / И.Я. Петров, А.Г. Бяков, В.Н. Допшак, Б.Г. Трясунов // Вестник Кузбасского государственного технического университета 2005. номер 2. С. 120-129.