Подоплелов Евгений Викторович,

к.т.н., доцент, Ангарский государственный технический университет, e-mail: uch_sovet@angtu.ru

- and a con_sovere angluing

Федоров Леонид Спиридонович,

студент гр. ТМмз-24-1, ФГБОУ ВО «Ангарский государственный технический университет»

АЛГОРИТМ РАСЧЕТА ДЛИНЫ ЗОНЫ СЕПАРАЦИИ АППАРАТА ДЛЯ ОТДЕЛЕНИЯ КАПЕЛЬНОЙ ЖИДКОСТИ ОТ ГАЗА

Podoplelov E.V., Fedorov L.S.

ALGORITHM FOR CALCULATING THE LENGTH OF THE SEPARATION ZONE OF THE DEVICE FOR SEPARATING DROPLET LIQUID FROM GAS

Аннотация. В работе предложен алгоритм расчета длины зоны сепарации факельного сепаратора, определены его основные геометрические размеры.

Ключевые слова: сепаратор, газ, нефть, гравитационное осаждение, каплеуловитель.

Abstract. The paper proposes an algorithm for calculating the length of the separation zone of a flare separator, and determines its basic geometric dimensions.

Keywords: separator, gas, oil, gravitational deposition, droplet catcher.

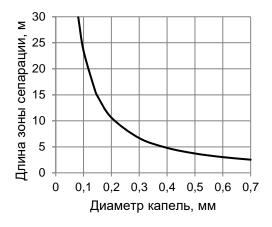
Факельные установки нефтепромыслов предназначены для безопасного и контролируемого сжигания или сброса горючих газов, которые образуются в процессе добычи нефти и газа, а также на объектах химической и нефтехимической промышленности. В состав факельной установки входят сепараторы, представляющие собой горизонтальные емкостные аппараты и предназначенные для отделения капельной жидкости от газа. В работе предложена методика расчета длины зоны сепарации аппарата диаметром $D=3,2~\mathrm{M}$. В расчетах принимались следующие исходные данные: объемный расход (V) газа варьировался от 7280 м³/ч до 56530 м³/ч, плотность (ρ_{r}) газа 3,03 кг/м³, коэффициент динамической вязкости (μ_{r}) газа 0,011·10⁻³ Па·с, плотность $(\rho_{\mathrm{ж}})$ жидкости 926 кг/м³. По опытным данным в нефтяных трапах преобладают капли диаметром (d) 100 мкм $(0,1~\mathrm{MM})$, однако для сепараторов природных газов таких данных нет. Поэтому в работе произвольно задавались рядом значений d от 0,08 до 0,7 мм.

Время осаждения капелек жидкости в зоне сепарации может быть определено:

$$\tau_{\rm oc} = D/W_{\rm oc},\tag{1}$$

где $W_{\rm oc}$ – скорость осаждения, м/с.

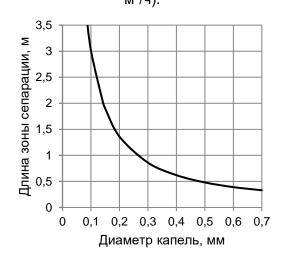
Для определения скорости осаждения, входящей в формулу (1), предварительно по методике [1] рассчитывался критерий Архимеда (Ar), по значению которого определялся режим осаждения капелек жидкости в сепараторе, а затем, в зависимости от режима осаждения, рассчитывался критерий Рейнольдса (Re) по соответствующей формуле.


Из литературных данных [1], известно, что при Re < 2, или при $\psi \cdot Ar < 1$

36, где ψ — это коэффициент формы (принимался равным 1), имеет место ламинарный режим осаждения. Переходный режим возникает при $2 \le Re \le 500$, или при $36 \le \psi \cdot Ar \le 83000$. Турбулентный режим наблюдается при Re > 500, или при $\psi \cdot Ar > 83000$.

Скорость осаждения капелек жидкости в сепараторе рассчитывалась [1]: $W_{
m oc}=Re\cdot\mu_{
m r}/(d\cdot
ho_{
m r}).$

Далее по формуле (1) определялось время осаждения капелек жидкости, длина зоны сепарации: $L=W_\Gamma\cdot au_{
m oc}$, где $W_\Gamma=4V/\pi D^2$ – линейная скорость газа.


По результатам расчетов получены зависимости, изображенные на рис. 1-4.

7 м , 6 м , 6 м , 6 м , 6 м , 6 м , 6 м , 6 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м , 6 м , 7 м ,

Рисунок 1 – Зависимость длины зоны сепарации от диаметра капель (при 56530 м³/ч).

Рисунок 2 – Зависимость длины зоны сепарации от диаметра капель (при 12328 м³/ч).

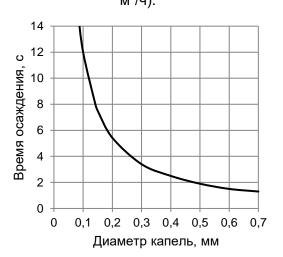


Рисунок 3 – Зависимость длины зоны сепарации от диаметра капель (при 7280 м³/ч).

Рисунок 4 – Зависимость диаметра капель от времени осаждения.

На рис. 5 представлена блок-схема алгоритма расчета длины зоны сепарации.

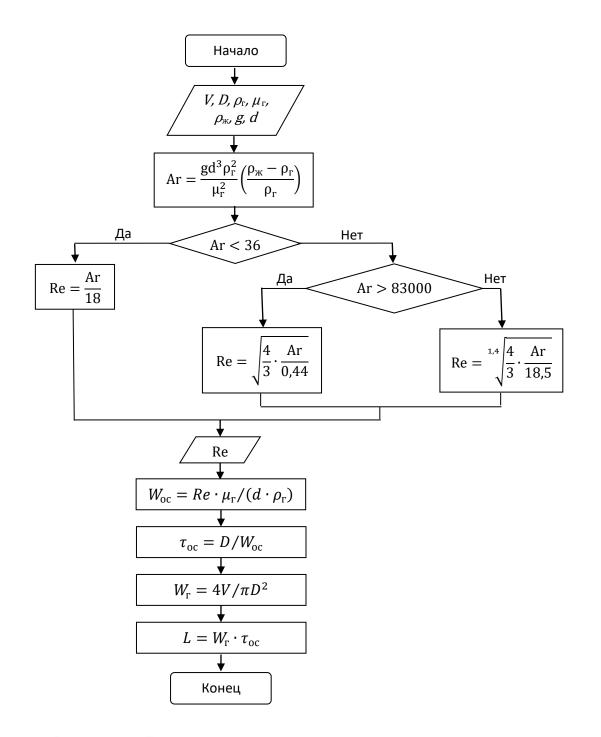


Рисунок 5 – Блок схема алгоритма расчета длины зоны сепарации.

Расчет выполнялся с помощью средств Microsoft Office Excel. Результаты расчетов для аппарата диаметром $D=3.2~\mathrm{M}$ представлены в табл. 1. Расчет производился для диаметра капелек жидкости от 0,05 мм до 0,8 мм. При диаметре капелек жидкость до 0,05 мм и меньше будет наблюдаться ламинарный режим осаждения, при диаметре от 0,8 мм и больше — турбулентный режим, при диаметре от 0,08 мм до 0,7 мм — переходный режим.

Результаты расчетов

<i>d</i> , мм	0,05	0,08	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
Ar	28,3	116,1	226,7	1813,9	6121,8	14510,9	28341,6	48974,2	77769,3	116087,1
Режим	лами- нар- ный	переходный								турбу- лент- ный
Re	1,6	4,6	7,4	32,5	77,5	143,5	231,4	342,1	475,9	593,1
<i>W</i> _{ос} , м/с	0,11	0,21	0,27	0,59	0,94	1,30	1,68	2,07	2,47	2,69
τ _{oc} , c	28,0	15,5	12,0	5,4	3,4	2,5	1,9	1,5	1,3	1,2
<i>W</i> _г , м/с	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
<i>L</i> , M	7,04	3,89	3,01	1,37	0,86	0,62	0,48	0,39	0,33	0,30

На рис. 6 построены кривые зависимости длины зоны сепарации от диаметра капель при различных значениях диаметров аппарата.

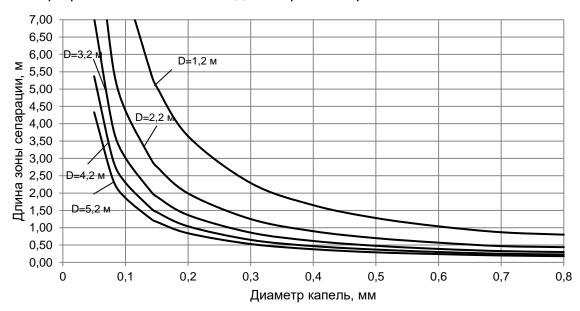


Рисунок 6 – Зависимость длины зоны сепарации от диаметра капель при различных значениях диаметров аппарата.

Данный алгоритм расчета длины зоны сепарации может быть использован при моделировании факельных сепараторов.

ЛИТЕРАТУРА

1. **Набока, В. В.** Методические указания по выполнению лабораторных работ по курсу "Процессы и аппараты химической технологии" / В. В. Набока, Е. В. Подоплелов, А. И. Дементьев, В. М. Соломонова. – Ангарск : АнГТУ, 2018. – 44 с.