Щербин Сергей Анатольевич,

к.т.н., доцент, Ангарский государственный технический университет, e-mail: dekan ftk@angtu.ru

Горбач Павел Сергеевич,

к.т.н., доцент, Ангарский государственный технический университет, e-mail: gorbachps@mail.ru

ОПТИМАЛЬНЫЕ РАЗМЕРЫ СОСУДОВ, РАБОТАЮЩИХ ПОД НАЛИВОМ ЖИДКОСТИ

Shcherbin S.A., Gorbach P.S.

THE OPTIMUM SIZES OF THE VESSELS, FILLED WITH LIQUID

Аннотация. Рассмотрен метод оптимизации размеров вертикальных цилиндрических резервуаров из условия минимальной материалоемкости корпуса. Получены выражения для определения оптимального диаметра и высоты резервуара.

Ключевые слова: резервуар, оптимальные размеры, материалоемкость.

Abstract. The method of optimization of vertical cylindrical vessels sizes for minimum material consumption is considered. Expressions are obtained to determine the optimal diameter and height of the vessel.

Keywords: vessel, optimal size, materials consumption.

В работе [1] рассмотрен метод оптимизации размеров сосудов из условия минимальной материалоемкости корпуса. Для аппаратов, работающих под внутренним избыточным давлением, были получены зависимости оптимального диаметра, высоты и массы корпуса от объема сосуда.

Представляет практический интерес исследование материалоемкости вертикальных цилиндрических резервуаров (РВС), работающих под наливом жидкости и использующихся в нефтехимической промышленности для хранения нефти и нефтепродуктов. РВС отличаются большим внутренним объемом (до 120 тыс. м³), поэтому оптимизация размеров может привести к существенной экономии конструкционных материалов и, соответственно, к уменьшению стоимости резервуаров.

В соответствии с законом Паскаля, графическая иллюстрация которого приведена на расчетной схеме (рисунок 1), в аппаратах, заполненных жидкими средами, при увеличении высоты столба жидкости $h_{\mathbf{x}}$ возрастает гидростатическое давление $p_{\mathbf{r}}$:

$$p_{r} = p_{0} + \rho_{\mathfrak{m}} g h_{\mathfrak{m}},\tag{1}$$

где p_0 – давление на свободной поверхности жидкости, Па; $\rho_{\rm ж}$ – плотность жидкости, кг/м 3 ; g – ускорение свободного падения, м/с 2 .

Существенное повышение $p_{\rm r}$ приводит к необходимости увеличения толщины цилиндрической стенки сосуда и, соответственно, к увеличению расхода материала. Для уменьшения металлоемкости резервуаров большого объема их изготавливают из нескольких цилиндрических поясов с разной толщиной, изменяющейся по высоте сосуда от максимального значения в нижней

части резервуара до минимального - в верхней.

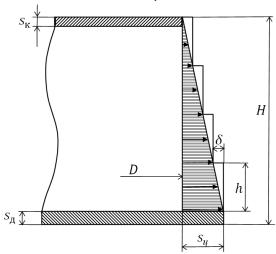


Рисунок 1 – Схема для расчета оптимальных размеров резервуара

Определим оптимальные размеры (внутренний диаметр D и высоту H) вертикального цилиндрического резервуара с днищем и крышкой из условия минимальной массы корпуса.

Масса сосуда:

$$m = \rho_{\text{M}} \left(V_{\text{MII}} + V_{\text{MII}} + V_{\text{MK}} \right), \tag{2}$$

где $\rho_{\rm M}$ – плотность конструкционного материала, кг/м³; $V_{\rm MII}$, $V_{\rm MII}$, и $V_{\rm MK}$ – соответственно объем конструкционного материала боковой поверхности цилиндрической части, днища и крышки, м³.

Чтобы учесть переменную по высоте сосуда толщину цилиндрической стенки (рисунок 1), представим объем материала $V_{\text{мщ}}$ в виде двух составляющих – объема $V_{\text{мц1}}$, соответствующего заштрихованной части стенки треугольного сечения, и объема $V_{\text{мц2}}$, равного объему незаштрихованной части стенки:

$$V_{\text{MII}} = V_{\text{MII}1} + V_{\text{MII}2}. \tag{3}$$

Выразим V_1 :

$$V_{\text{mu1}} = \pi D H s_{\text{u}} / 2, \tag{4}$$

где D и H — соответственно внутренний диаметр и высота цилиндрической части сосуда, м; s_{π} —толщина цилиндрической стенки нижнего пояса, м.

Полный объем сосуда с плоским днищем и крышкой:

$$V = \pi D^2 H/4,\tag{5}$$

тогда высота цилиндрической части резервуара:

$$H = 4V/(\pi D^2) \tag{6}$$

И

$$V_{\text{MH}1} = 2 V s_{\text{H}} / D. \tag{7}$$

Расчетная толщина цилиндрической стенки по упрощенному выражению:

$$s_{\pi} = pD/(2[\sigma]\varphi), \tag{8}$$

где $p = \rho_{**}gh_{**}$ – расчетное давление для резервуара, работающего под нали-

вом, Па; $[\sigma]$ – допускаемое напряжение конструкционного материала при расчетной температуре, Па; φ – коэффициент прочности сварного шва.

Для резервуаров, работающих под наливом, можно принять $h_{\mathbf{x}} = H$. Тогда толщина цилиндрической стенки нижнего пояса с учетом изменяющегося $p_{\mathbf{r}}$:

$$s_{\pi} = 2\rho_{\pi}gV/(\pi[\sigma]\varphi D). \tag{9}$$

Для упрощения выражения используем расчетный комплекс, учитывающий плотность жидкости и прочность конструкционного материала:

$$f_s = 2\rho_{\mathbf{x}}g/(\pi[\sigma]\varphi),\tag{10}$$

тогда

$$s_{\pi} = f_s V / D \tag{11}$$

И

$$V_{\text{Mul}} = 2 f_s V^2 / D^2. \tag{12}$$

Выразим $V_{\text{ми2}}$:

$$V_{\text{mu2}} = \pi D h \delta n / 2, \tag{13}$$

где h — высота горизонтальных цилиндрических поясов резервуара, м; n = H/h — количество поясов, шт; $\delta = s_{\scriptscriptstyle \rm II}/n$ — изменение толщины стенки поясов, м.

С учетом (11), запишем:

$$V_{\text{Mu2}} = \pi h f_s V / 2. \tag{14}$$

Тогда по (3), (12) и (13):

$$V_{\text{MII}} = 2f_s V^2 / D^2 + \pi h f_s V / 2. \tag{15}$$

Объем конструкционного материала плоского днища и крышки:

$$V_{\rm MH} = \pi D^2 s_{\rm H}/4; \tag{16}$$

$$V_{\text{MK}} = \pi D^2 s_{\text{K}} / 4, \tag{17}$$

где $s_{_{\! I\!\! I}}$ и $s_{_{\! K}}$ – толщина стенки соответственно днища и крышки резервуара, м.

Величина $\mathbf{s}_{\mathtt{g}}$ и $\mathbf{s}_{\mathtt{k}}$ выбирается в соответствии с [2] (таблица 1) и [3] (таблица 2). В частности, днища резервуаров объемом более 1000 м³ должны иметь центральную часть и кольцевые окрайки, при этом выступ окраек за внешнюю поверхность стенки следует принимать 50–100 мм. Наличие в рулонируемом полотнище днища листов различной толщины не допускается. Номинальная толщина листов центральной части днища или днища без окраек за вычетом припуска на коррозию должна составлять 4 мм для резервуаров объемом менее 2000 м³ и 6 мм – для резервуаров объемом 2000 м³ и более.

Таблица 1 Минимальные конструктивные толщины листов стенки резервуара [2]

Диаметр резервуара D , м	Минимальная толщина листов стенки $s_{\scriptscriptstyle m I}$, мм
до 10 включительно	4
свыше 10 до 16 включительно	5
свыше 16 до 25 включительно	6
свыше 25 до 40 включительно	8

свыше 40 до 65 включительно	10
свыше 65	12

Таблица 2

Минимальные конструктивные толщины окрайки днища резервуара [3]

Расчетная толщина первого пояса	Минимальная конструктивная
стенки, мм	толщина окрайки днища, мм
свыше 9 до 16 включительно	9,0
свыше 17 до 20 включительно	12,0
свыше 20 до 26 включительно	14,0
свыше 26	16,0

Подставив (15), (16) и (17) в (2), получим:

$$m = \rho_{\rm M} (2f_{\rm s}V^2/D^2 + \pi h f_{\rm s}V/2 + (s_{\rm g} + s_{\rm k})\pi D^2/4), \tag{18}$$

Для определения оптимального диаметра D_m , соответствующего минимальной материалоемкости корпуса резервуара, найдем производную полученной функции по диаметру:

$$dm/dD_m = (s_{\rm a} + s_{\rm k})\pi D_m/2 - 4f_{\rm s}V^2/D_m^3.$$
(19)

Проверим выполнение условия:

$$d^2m/dD_m^2 > 0; (20)$$

$$(s_{\pi} + s_{\kappa})\pi/2 + 12 f_s V^2/D_m^4 > 0$$
,условие выполняется. (21)

Приравняем первую производную к нулю и выразим оптимальный диаметр:

$$(s_n + s_k)\pi D_m/2 - 4f_s V^2/D_m^3 = 0; (22)$$

$$D_m = \left\{ 8 \, f_s V^2 / \left[\pi (s_{\pi} + s_{\kappa}) \right] \right\}^{0.25}. \tag{23}$$

Используя полученное выражение, в соответствии с (6) выразим оптимальную высоту цилиндрической части резервуара:

$$H_m = \left[2(s_{_{\rm H}} + s_{_{\rm K}})/(\pi f_{_{\rm S}}) \right]^{0.5}. \tag{24}$$

Учитывая (10) и (24) можно сделать вывод, что оптимальная высота цилиндрического резервуара не зависит от его объема.

ЛИТЕРАТУРА

- 1. Щербин С.А., Внуков Б.Г., Гордеев К.И. Оптимизация размеров сосудов из условия минимальной материалоемкости корпуса. Сборник научных трудов Ангарского государственного технического университета. Ангарск: АнГТУ, 2018. № 14. с. 64-67.
- 2. ГОСТ 31385-2016. Резервуары вертикальные цилиндрические стальные для нефти и нефтепродуктов. Общие технические условия. М.: Стандартинформ, 2016. 91 с.
- 3. РД 16.01-60.30.00-КТН-026-1-04. Нормы проектирования стальных вертикальных резервуаров для хранения нефти объемом 1000-50000 м^3 .