Андреенко Матвей Викторович,

аспирант, Ангарский государственный технический университет,

e-mail: nir@angtu.ru

АНАЛИЗ ПРИЧИН НИЗКОЙ ИНТЕНСИВНОСТИ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА ВОДОЙ

Andreenko M.V.

ANALYSIS OF CAUSES OF LOW INTENSITY OF ABSORPTION OF CARBON DIOXIDE BY WATER

Аннотация. Установлены причины низкой интенсивности абсорбции диоксида углерода водой.

Ключевые слова: абсорбция, диоксид углерода, кольца Рашига. **Abstract.** Identified low intensity causes carbon dioxide absorption water.

Keywords: absorption, carbon dioxide, Raschig rings.

На АО «Ангарская нефтехимическая компания» процесс очистки синтезгаза от диоксида углерода осуществляется при поглощении диоксида углерода водой в колоннах, заполненных керамическими кольцами Рашига ($80 \times 80 \times 8$). Используемое для этого абсорбционное оборудование характеризуется значительными габаритами и при повышенных нагрузках не справляется с задачей снижения концентрации диоксида углерода до 4 % об. Высота слоя насадки в каждой из восьми абсорбционных колонн составляет 14 м при диаметре колонны 2,4 м. При этом суммарный объем слоя насадки из колец Рашига составляет $506 \, \text{м}^3$.

Анализ физико-химических, технологических и конструктивных факторов позволяет выявить следующие основные причины низкой интенсивности процесса абсорбции диоксида углерода водой.

- 1. Низкая движущая сила физической абсорбции; она обусловлена низкой растворимостью диоксида углерода в воде при данных условиях и низкой начальной концентрацией диоксида углерода в газе. Начальная концентрация диоксида углерода в газе составляет 6-8 % об. Движущая сила несколько повышается за счет создания высокого давления в колонне [1], в связи с этим давление в колоннах поддерживают 27 ат.
- 2. Низкая удельная поверхность колец Рашига (80×80×8), расположенных «насыпью»; удельная поверхность данной насадки составляет 58 м²/м³, что приводит к формированию недостаточно высокой площади поверхности массопередачи.
- 3. Низкая смачиваемость колец Рашига вследствие конструктивных особенностей насадки, а также вследствие неравномерного распределения жидкости в сечении аппарата и пристеночного эффекта; неравномерное распределе-

ние жидкости приводит к снижению площади контакта фаз; известно, что в данной насадке характер течения жидкости по наружной и внутренней поверхностям колец не одинаков. Внутри горизонтально расположенного кольца жидкость течёт лишь по нижней его части, верхняя внутренняя часть кольца остается сухой. Так, в работе [2], показано, что чем больше диаметр колец Рашига, тем меньше расход жидкости, смачивающей внутреннюю поверхность колец. Например, для колец диаметром более 32 мм доля жидкости, протекающей по внутренней поверхности, составляет лишь 10 % от общего количества жидкости.

4. Низкая приведенная скорость газа в слое колец Рашига, которая составляет 0,02-0,06 м/с, что приводит к низкой интенсивности массопередачи. Так, при нагрузке по синтез-газу 190000 м³/ч, начальной концентрации диоксида углерода в газе 6 % об., конечной концентрации диоксида углерода в газе 4 % в действующих колоннах объемный коэффициент массопередачи составляет 64 ч⁻¹.

Выявление причин низкой селективности процесса позволяет перейти к выбору метода интенсификации процесса. В соответствии с рекомендациями [3] можно выделить два основных способа:

- увеличение движущей силы абсорбции за счет понижения температуры, повышения давления в колонне или за счет использования в качестве абсорбента поглотителя (например, моноэтаноламина), вступающего в реакцию с диоксидом углерода;
- увеличение объемных коэффициентов массопередачи за счет реализации эффективных гидродинамических режимов с турбулизацией потоков и созданием развитой поверхности контакта фаз.

Первый метод интенсификации связан с большими экономическими затратами, поскольку предусматривает повышение давления или снижение температуры в колонне [3] или восстановление химически связанного поглотителя. Наиболее перспективной, по нашему мнению, является разработка новых видов регулярных насадок с развитой поверхностью контакта фаз.

ЛИТЕРАТУРА

- 1. Касаткин, А.Г. Основные процессы и аппараты химической технологии. М.: Химия, 1973 752 с.
- 2. Рамм, В.М. Абсорбция газов. М.: Химия, 1966. 620 с.
- 3. Андреенко, М.В. Моделирование гидродинамических процессов в слое регулярной насадки / Андреенко М.В., Бальчугов А.В., Бадеников А.В. // Химическая промышленность сегодня. 2017. № 5. С. 44-49.