Паршин Виктор Максимович,

к.т.н., доцент, Ангарский государственный технический университет,

e-mail: pgs@angtu.ru

Котовщиков Евгений Викторович,

магистрант, Ангарский государственный технический университет,

e-mail: pgs@angtu.ru

Кустикова Ксения Сергеевна,

магистрант, Ангарский государственный технический университет,

e-mail: pgs@angtu.ru

ИССЛЕДОВАНИЕ ПРОЧНОСТИ НА РАСТЯЖЕНИЕ ПО НЕПЕРЕВЯЗАННОМУ ШВУ

Parshin V.M., Kotovshikov E.V. Kustikova K.S.

INVESTIGATION OF THE TENSILE STRENGTH OF AN UNTIED SEAM

Аннотация. Проведены испытания с разными клеевыми составами для определения прочности на отрыв.

Ключевые слова: опыты, клеевой состав, прочность на растяжение.

Abstract. Tests were performed with different adhesive compositions to determine the tear strength

Keywords: experiments, adhesive composition, tensile strength.

Одной из основных характеристик кладки блоков является прочность на растяжение по неперевязанному шву (на отрыв). В лаборатории кафедры ПГС были проведены испытания образцов на отрыв с использованием различных клеящих материалов, в качестве которых использовались: клей для газоблоков, разработанный в ЗАО «Стройкомплекс»; цементно-песчаный раствор; клей усиленный для плитки и керамогранита КЕRAMIK PRO от производителя «Вегдаиf» с добавлением суперпластификатора «Полипласт СП-1»; цементно-песчаный раствор с добавлением суперпластификатора «Полипласт СП-1».

Для испытаний использовались блоки производства ЗАО «Стройкомплекс», определялись их прочность и плотность, для чего выпиливались образцы размером 100x100x100 мм. Для испытаний на отрыв подготавливались образцы 100x150x120 мм. После приклеивания образцы выдерживались 30÷35 суток в условиях лаборатории.

Результаты испытаний приведены в таблице №1.

Анализ полученных результатов показывает, что наибольшую прочность при отрыве показали образцы с усиленным клеем для плитки керамогранита КЕRAMIK PRO. Однако прочность на отрыв образцов, склеенных раствором с добавлением «Полипласт СП-1», уступает незначительно, а учитывая стоимость, они будут предпочтительнее.

Испытания на отрыв производились в соответствии с [1] с помощью прибора ПОС-10 МГ4 кл. (рисунок 1).

Таблица 1 Результаты испытаний на отрыв

Nº	Площадь	Разрушающая	Площадь	Прошреть на	В
	поверхности,	нагрузка,	склеивания	Прочность на	P _{cp} ,
образца	А, см ²	F, κH	при отрыве, %	отрыв, Р, Н/см²	H/cm ²
Клей для газобетона					
1	121	0,66	100	0,55	
2	123,5	0,63	100	0,51	0,48
3	128,7	0,49	100	0,38	
Цементно-песчаный раствор					
7	126,2	0,9	23	3,1	
8	126,7	0,69	28	1,94	1,3
9	124,6	3,29	90-95	2,93	
Цементно-песчаный раствор с добавлением «Полипласт СП-1»					
7	126,2	0,9	23	3,1	
8	126,7	0,69	28	1,94	
9	124,6	3,29	90-95	2,93	2,14
10	132,8	0,79	70	0,84	
11	136,7	1,18	45	1,91	
Клей для керамогранита с добавлением «Полипласт СП-1»					
12	132,6	2,24	60	2,82	
13	135,2	1,6	100	1,6	2,28
14	132,3	2,73	85	2,43	

Рисунок 1 – Установка перед испытанием

Рисунок 2 – Площадь склеивания клея для газоблоков

Рисунок 3 – Площадь склеивания цементно-песчаного раствора

Рисунок 4—
Площадь
склеивания
усиленного клея
для плитки

Проведённые опыты показывают, что стандартные клеевые составы имеют лучшую адгезию, чем цементно-песчаный раствор (рисунки 2÷4.)

ЛИТЕРАТУРА

1. ГОСТ 24992-2014 Конструкции каменные. Метод определения прочности сцепления в каменной кладке.