Кузьмин Сергей Иванович,

к.т.н., доцент, Ангарский государственный технический университет, e-mail: sergey.kuzmin@mail.ru

Зеленина Анна Алексеевна,

магистрант, Ангарский государственный технический университет, e-mail: pgs@angtu.ru

МОДЕЛИ МЕТЕОРОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ ДЛЯ АНАЛИЗА ТЕПЛОПОТРЕБЛЕНИЯ ЗДАНИЙ

Kuzmin S.I., Zelenina A.A.

MODELS OF METEOROLOGICAL INDICATORS FOR ANALYSIS OF BUILDING HEAT CONSUMPTION

Аннотация. Предложена модель метеорологических показателей наружного климата для определения теплопотребления системы отопления.

Ключевые слова: расчетная температура наружного воздуха, система отопления, теплоотдача, гидравлическая характеристика, приведенные затраты.

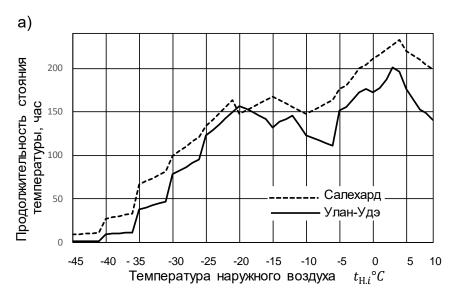
Abstract. A model of meteorological indicators of the external climate to determine the heat consumption of the heating system has been proposed.

Keywords: estimated outdoor air temperature, heating system, heat output, hydraulic characteristic, given costs.

Для выбора мощности и анализа работы теплогенерирующего оборудования системы отопления здания важно знать затраты тепла в некоторый произвольный отрезок отопительного периода $W_{O,i}$ (Вт*час), которые зависят от климатических параметров района строительства [1]:

$$W_{O.i} = Q_{co} \sum_{i=10}^{t_{H.0}} \frac{t_{g} - t_{t.i}}{t_{g} - t_{H.0}} \cdot \tau_{ni}, \qquad (1)$$

где Q_{co} - расчетная мощность системы отопления здания, Вт; t_{e} , $t_{H.0}$ и $t_{t.i}$ - температуры соответственно внутреннего воздуха, наружного по параметрам категории «Б» и средняя за некоторый отрезок отопительного периода, °C;


 au_{ti} - продолжительность отрезка отопительного периода, в котором наблюдается температура воздуха $t_{t,i}$, час.

Точность результатов, получаемых из выражения (1) тем выше, чем меньше отрезок au_{ti} . Однако использование уравнения (1) для небольших по продолжительности отрезков затруднительно, так как необходимо использовать частные статистические характеристики климата, имеющие существенные отличия по географическому положению объекта. Поэтому представляется по-

лезным выразить составляющую $\sum_{i=10}^{l_{H,0}} \frac{t_e - t_{t,i}}{t_e - t_{H,0}} * \tau_{ni}$ в (1), в виде функциональной

зависимости от определяющего параметра – текущей температуры наружного воздуха.

Распределение продолжительности периодов стояния температур наружного воздуха в течение среднестатистического года приводятся в [2] для представительских пунктов основных климатических зон страны. На рис 1 приведены графики распределения часов стояния температур для пунктов «холодного» - Салехард, «умеренно-холодного» - Улан-Удэ, «умеренного» - Москва и «умеренно-теплого с мягкой зимой» - Новороссийск в диапазоне температур отопительного периода (от +10 °C и ниже).

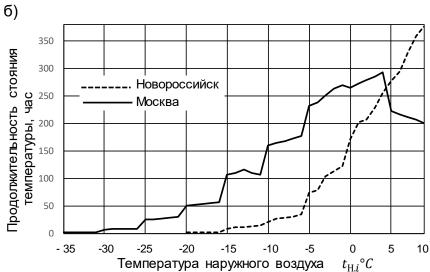


Рисунок 1 – Продолжительность стояния температуры наружного воздуха для пунктов: a) - «холодного» и «умеренно-холодного», б) - «умеренного» и «умеренно-теплого»

Как следует из графиков, продолжительности стояния температур сложно представить в виде функциональной зависимости. Однако, если выразить распределение параметров через интегральный показатель:

$$k_{t\tau,i} = \sum_{i=10}^{t_{H,0}} \frac{t_{e} - t_{t,i}}{t_{e} - t_{H,0}} \bullet \tau_{ni} = f(\Delta t_{Hi}),$$
(2)

то, проявляется определенная «гладкая» зависимость (рис. 2), которую можно интерпретировать через приближенное уравнение $f(\Delta t_{Hi})$.

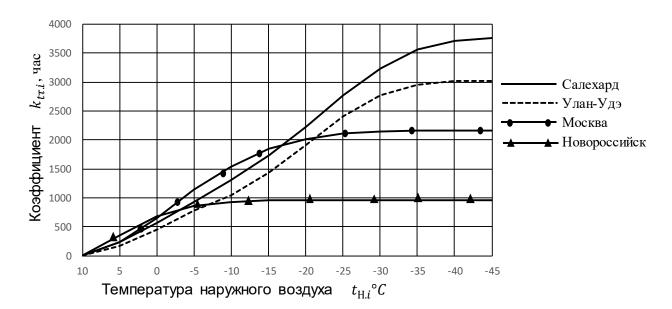


Рисунок 2 – Интегральная продолжительность стояния температуры наружного воздуха

Таким образом получаем следующие уравнения приближенной регрессии для выбранных географических пунктов:

- Салехард:
$$k_{t\tau,i} = 495 + 0.04 \cdot t_{H,i}^3 + 1.96 \cdot t_{H,i}^2 - 68.05 \cdot t_{H,i}$$
 (3)

- Улан-Удэ:
$$k_{t\tau,i} = 380 + 0.0425 \cdot t_{H,i}^3 + 1.99 \cdot t_{H,i}^2 - 57.23 \cdot t_{H,i}$$
 (4)

- Москва:
$$k_{t\tau,i} = 770 + 0.037 \cdot t_{H,i}^3 - 0.95 \cdot t_{H,i}^2 - 80 \cdot t_{H,i}$$
 (5)

- Новороссийск:
$$k_{t\tau,i} = 643 + 0.0214 \cdot t_{H,i}^3 - 1.805 \cdot t_{H,i}^2 - 49.45 \cdot t_{H,i}$$
 (6)

Использование уравнений типа (3÷6) позволяет наиболее точно и достоверно определять теплопотребление системы отопления зданий, но при условии известного статистического распределения периодов стояния температуры, так как даже в одной климатической зоне эти распределения не универсальны и не обладают признаками подобия.

Для более «грубого» определения теплопотребления за отопительный период в целом используется выражение (7):

$$W_{O.\Pi} = Q_{co} \frac{t_s - t_{on}}{t_s - t_H} * \tau_{on} * 24$$
 (7)

где $t_{\!H}$ и t_{on} - температуры соответственно наружного воздуха по параметрам категории «Б» и средняя за отопительный период, °C; τ_{on} - продолжительность отопительного периода, сутки.

Анализ выражения (1) затрудняет наличие большого количества показателей и их произвольное значение. Поэтому представляется полезным выявить зависимости между климатическими параметрами, входящими в формулу (7), с целью ее упрощения.

Произведение разности температур (t_s-t_{on}) и продолжительности отопительного периода au_{on} представляет собой «градусо-сутки» отопительного периода - Z_{on} [4]:

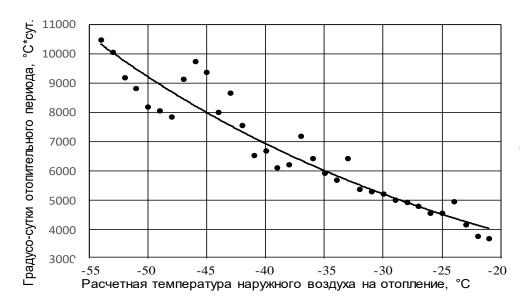


Рисунок 3 – Распределение «градусо-суток» от расчетной температуры наружного воздуха по параметрам категории «Б»

На рисунке 3 представлены данные, выражающие стохастическую связь между расчетной температурой наружного воздуха по параметрам категории «Б» и «градусо-сутками» отопительного периода для географических пунктов климатических районов при t_e =20 °C [3].

Принимая значения $Z_{\it on}$, представленные на рисунке 3 в качестве «облака» статистических данных, получено следующее уравнение регрессии, описывающие соответствующее распределение с 12 % точностью:

$$Z_{on} = 2280 \cdot \exp(-0.028 \cdot t_{_H})$$
 (8)

Таким образом, уравнение (7) можно представить как функциональную зависимость только от одной переменной - t_{μ}^{E} :

$$W_{O.II} = Q_{co} \frac{24720 \cdot exp(-0.028 \cdot t_H)}{t_e - t_H}$$
 (9)

Выражения (3÷6) и (9) представляют модели, связывающие основные метеорологические характеристики населенного пункта, и могут служить основой для анализа теплопотребления систем отопления зданий и эффективности энергосберегающих мероприятий.

ЛИТЕРАТУРА

- 1. СП 60.13330. Отопление, вентиляция, кондиционирование.
- 2. ГОСТ 16350-80 Климат СССР.
- 3. Справочник проектировщика. Внутренние санитарно- технические системы // Под. Ред. И.Г. Староверова ч.1 Отопление. М., Стройиздат, 1993. 896 с.
- 4. СП 131.13330.2018 Строительная климатология.
- 5. СП 50.13330.2012 Тепловая защита зданий.