Прусаков Валерий Михайлович,

д.м.н., профессор, Ангарский государственный технический университет, e-mail:vmprusak@yandex.ru

Прусакова Александра Валерьевна,

к.м.н., доцент, Ангарский государственный технический университет, e-mail: alprus@mail.ru

АППРОКСИМАЦИЯ ВОЛНООБРАЗНЫХ (ЦИКЛИЧЕСКИХ) ДИНАМИК ЗАБОЛЕВАЕМОСТИ И ЕЕ РИСКА

Prusakov V.M., Prusakova A.V.

APPROXIMATION OF WAVE-BASED (CYCLIC) DYNAMICS OF MORBIDITY AND ITS RISK

Аннотация. Приводятся результаты сравнительной оценки использования аппроксимации многолетней динамики заболеваемости и ее риска полиномом 5 и 6 степеней. Предложены рекомендации к использованию обоих рассмотренных вариантов.

Ключевые слова: аппроксимация, коэффициенты детерминации, заболеваемость МНИЗ, полином, относительный риск.

Abstract. Some results of a comparative assessment of the use of the approximation of long-term dynamics of the incidence and its risk by a polynomial of 5 and 6 degrees are presented. Recommendations for the use of both options considered are proposed.

Keywords: approximation, determination coefficients, incidence of MNID, polynomial, relative risk.

Актуальность проблемы обусловлена необходимостью выявления массовых неинфекционных заболеваний (МНИЗ), их мониторинга в рамках социально-гигиенического мониторинга и профилактики путем разработки мероприятий на основании учета роли адаптационных реакций и неблагоприятных локальных, региональных и геофизических факторов среды обитания в их формировании.

Для решения многочисленных задач этой проблемы необходимы исследования многолетней динамики заболеваемости и ее риска в связи с выше упомянутыми факторами [1]. Одной из частных задач таких исследований является установление цикличности или волнообразности многолетних динамик. Достаточно успешно эта задача реализуется путем аппроксимации реальных данных в виде полинома 5 степени [2] или полинома 6 степени [3].

Использование полинома 5 степени привлекательно тем, что в интернете есть система Wolfram|Alpha, которая выдает выраженные волнообразные кривые, уравнение аппроксимации и характеристики R^2 и скорректированного R^2 (коэффициентов детерминации). Но эта система работает на рядах с числом вариант не более 12.

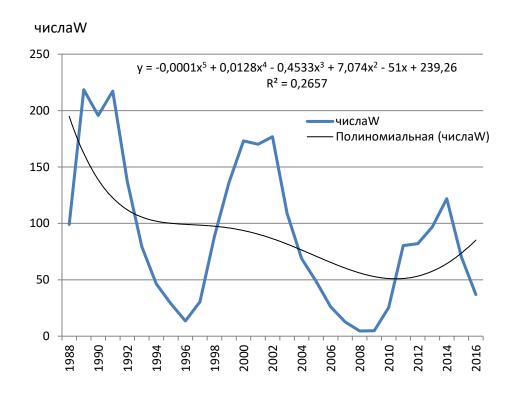
Система Microsoft Excel позволяет работать с рядами несколько десятков значений (в данном случае лет), осуществляя аппроксимацию в виде полиномов 5 и 6 степеней с оценкой их только по нескорректированному коэффициенту детерминации R². В случае изучения риска заболеваемости этот недостаток

можно отнести к неопределенностям, которые предусматривается учитывать при оценке риска.

В данном сообщении приводятся некоторые результаты сравнительной оценки использования полиномов 5 и 6 степеней для аппроксимации и моделировании динамики заболеваемости населения и ее риска.

Для достижения цели выполнили сравнительный анализ результатов моделирования общей заболеваемости детей на территории промышленных городов и на фоновой территории Иркутской области, а также динамики среднегодовых чисел Вольфа в 1988–2016 г.г. с использованием указанных полиномов.

Общая заболеваемость по обращаемости (или распространенность) определяли по данным статистической отчетности по форме 12 (до 2015 г.) и 15 (с 2016г.), а численность детей до 14 лет по статистическим сборникам «Административно-территориальное деление и численность населения Иркутской области по полу и возрасту», «Естественное движение населения Иркутской области».


Аппроксимацию выполняли с помощью системы Microsoft Excel с получением математической формулы и коэффициента детерминации (R^2). В зависимости от уровня R^2 модели подразделяли на три группы: 0.8-1 — модель хорошего качества; 0.5-0.8 — модель приемлемого качества; 0-0.5 — модель плохого качества.

Анализировали визуально форму кривых реально наблюдаемых данных и их аппроксимации полиномом 5-й и 6-й степеней, различия в значениях коэффициентов детерминации и оценки качества моделей. Всего проанализированы 24 кривых и 24 коэффициента детерминации.

Визуальное сравнение полученных кривых (рис. 1-3) позволяет обратить внимание на существенно более эффективную аппроксимацию при использовании полинома 6-й степени, особенно в случае более выраженных колебанийзначений чисел Вольфа. Эти различия, менее выраженные, наблюдаются при анализе динамики заболеваемости и ее риска у детей г. Шелехов (рис. 2 и 3) и Усолье-Сибирское.

Сравнение коэффициентов детерминации полученных моделей при описании динамики относительного риска (OP) первичной и общей заболеваемости всеми и некоторыми отдельными классами болезней позволяет отметить следующее:

- если амплитуда колебания волнообразной динамики не превышает 0,5 OP, то R^2 полинома 6 степени возрастает во 2 или 3 знаке после запятой по сравнению с R^2 полинома 5 степени, то есть несущественно;
- если амплитуда колебания волнообразной динамики превышает 0,5 OP, то R² полинома 6 степени возрастает в 1 знаке после запятой по сравнению с R² полинома 5 степени, то есть, существенно улучшая аппроксимацию.

числаW

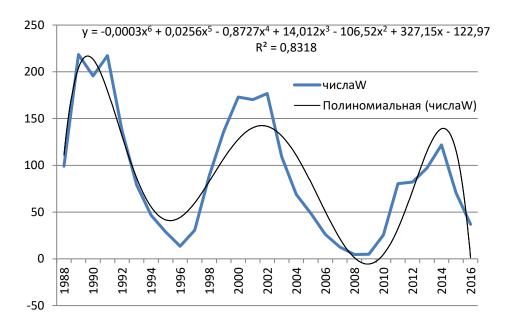


Рисунок 1- Аппроксимация динамики чисел Вольфа (числа W) в 1988–2016 г.г. полиномом 5-й и 6-й степени

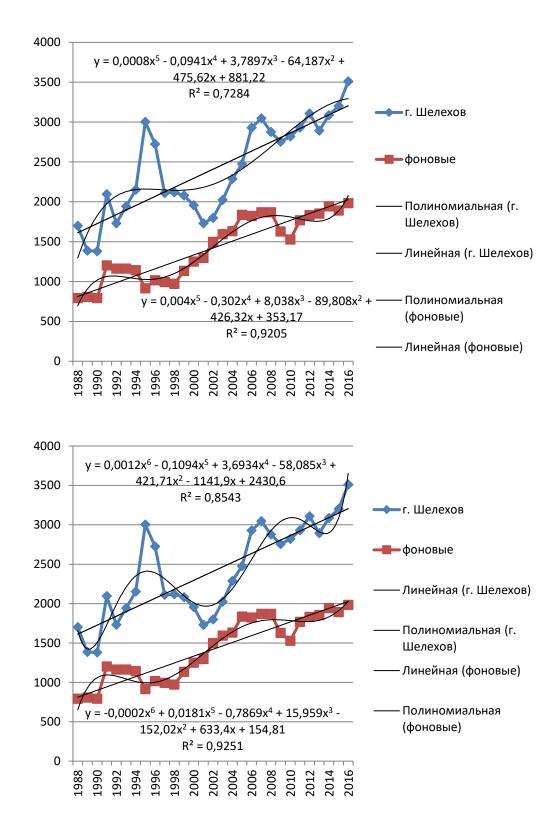
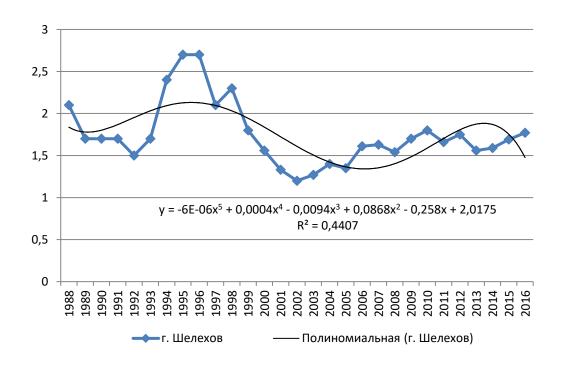



Рисунок 2 - Аппроксимация динамик общей заболеваемости детей г. Шелехов и на фоновой территории в 1988–2016 г. г. полиномом 5-й и 6-й степени

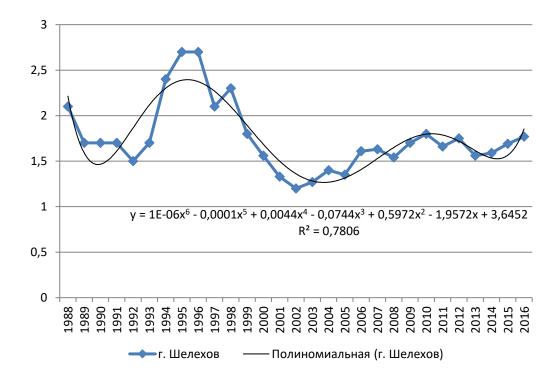


Рисунок 3 - Аппроксимация динамик OP заболеваемости детей г. Шелехов в 1988–2016 г. г. полиномом 5-й и 6-й степени

В случае аппроксимации волнообразных близких к гармоничным динамикам, как, например, динамика годовых чисел Вольфа (характеризующих солнечную активность) в 1988-2016 г. г. применение полинома 5 степени не эффективно (R^2 = 0,2637) и не отражает характер кривой. Полученная модель плохого качества. Напротив, при аппроксимации полиномом 6 степени полученный R^2 = 0,8318 свидетельствует о достаточно хорошем качестве модели (см. рис. 1).

Сравнительная характеристика коэффициентов детерминации и качества полученных моделей кривых динамики общей заболеваемости и ее риска у детей в промышленных городах Иркутской области представлены в таблице1.

Таблица 1 Сравнительная характеристика коэффициентов детерминации и качества моделей при аппроксимации динамики годовых показателей активности солнца, общей заболеваемости и ее риска у детей в городах Иркутской области в 1989–2016 г.г.

Территория/ Город	Показатель	ПОЛИНОМ		ПОЛИНОМ	
		5-й степени	6-й степени	5-й степени	6-й степени
Солнце- (число Вольфа)	R ²	0,2637	0,8318	Нет данных	Нет данных
	Оценка модели	МПК	MXK		
		Заболеваемость		Риск заболеваемости	
г. Ангарск	R ²	0,6023	0,6048	0,8367	0,8456
	Оценка модели	МПрК	МПрК	MXK	MXK
г. Братск	R^2	0,9338	0,9477	0,464	0,472
	Оценка модели	MXK	MXK	МПК	МПК
г. Усолье- Сибирское	R^2	0,8453	0,8953	0,4073	0,5968
	Оценка модели	MXK	MXK	МПК	МПрК
г. Иркутск	R^2	0,9824	0,9882	0,7442	0,7511
	Оценка модели	MXK	MXK	МПрК	МПрК
г. Шелехов	R^2	0,7284	0,8543	0,4407	0,7806
	Оценка модели	МПрК	МПрК	МПК	МПрК
Фоновая	R ²	0,9205	0,9251	Нет дан- ных	Нет дан- ных
	Оценка модели	MXK	MXK		

Примечание: МПК — модель плохого качества; МХК — модель хорошего качества; МПрК — модель приемлемого качества.

Согласно представленным в таблице данным, многолетняя динамика общей заболеваемость достаточно хорошо (особенно по качественным оценкам) аппроксимируется обоими полиномами. Что же касается многолетних динамик относительного риска общей заболеваемости, то здесь значительно лучший результат у полинома 6-й степени, в частности, в городах Усолье-Сибирское и Шелехов. В этих городах получены модели приемлемого качества полиномом 6-й степени, вместо моделей плохого качества по полиному 5-й степени.

Таким образом, при анализе данных относительно коротких (6 – 12-ти летних) периодов наблюдений и оценки заболеваемости населения МНИЗ и ее риска оптимальным вариантом моделирования является полином 5-й степени по программе Wolfram/Alpha.

При изучении особенностей динамики заболеваемости и ее риска в связи с воздействием различных факторов среды обитания за более длительные периоды наблюдения предпочтительным является использование полинома 6-й степени.

ЛИТЕРАТУРА

- 1. Первая Глобальная министерская конференция по здоровому образу жизни и неинфекционным заболеваниям (Москва, 28–29 апреля 2011 г.) Концептуальная записка контроль за НИЗ и их детерминантами [Электронный ресурс] URL: http://www. who.int/nmh/events/moscow_ncds_2011/ conference_ documents/monitorring_ncds_russian.pdf?ua=1 (дата обращения: 1.10.2014).
- 2. Прусаков В.М., Прусакова А.В. Адаптационные процессы и экологически обусловленный риск заболеваемости населения промышленных городов // Ангарск: Изд-во АнГТУ, 2015. 228 с.
- 3. Динамика преступности в Вооруженных Силах СССР (эпидемиологический анализ, моделирование и прогнозирование). Реферат. [Электронный ресурс] URL: file:///C:/Users/E8CA~1/AppData/Local/Temp/_tc/referat.html (дата обращения:15.03.2020).
- 4. Расчет коэффициента детерминации в MicrosoftExcel[Электронный ресурс] URL: https:// tvoupc.ru/raschet-koefficienta-determinacii-v-microsoft-excel. html (дата обращения 12.05.2020).