Князева Тамара Владимировна,

обучающийся, Ангарский государственный технический университет,

e-mail: tomatolok@mail.ru

Раскулова Татьяна Валентиновна,

д.х.н., зав. кафедрой ХТТ, Ангарский государственный технический университет,

e-mail: raskulova@list.ru

РАБОТА КОНДЕНСАЦИОННОГО ОБОРУДОВАНИЯ УСТАНОВОК ИЗОМЕРИЗАЦИИ ЛЕГКОЙ ПРЯМОГОННОЙ НАФТЫ

Knyazeva T.V., Raskulova T.V.

THE OPERATION OF THE CONDENSING EQUIPMENT OF THE ISOMERIZATION UNITS OF LIGHT RIGHT NAPTHA

Аннотация. проведен анализ работы конденсационного оборудования блоков предварительного фракционирования сырья установок изомеризации прямогонной нафты. Рассмотрены варианты компоновки конденсационных аппаратов ректификационных колонн, оценена эффективность их работы.

Ключевые слова: изомеризация, аппарат воздушного охлаждения, водяной холодильник-конденсатор.

Abstract. the analysis of the operation of the condensation equipment of the units for the preliminary fractionation of raw materials for the isomerization of straight-run naphtha. Variants of arrangement of condensing devices of rectification columns are considered, their efficiency is estimated.

Keywords: isomerization, air cooler, water cooler-condenser.

Согласно современным требованиям к товарным топливам [1], содержание бензола в автомобильных бензинах не должно превышать 1% об. Исходя из этих требований, изомеризация является одним из базовых процессов, позволяющих вырабатывать высокооктановые компоненты бензиновых топлив без значительного увеличения содержания в них бензола.

Действующие установки изомеризации, как правило, включают в себя блоки предварительного разделения бензинового сырья процесса с целью получения сырья изомеризации — смеси углеводородов с фракционным составом 30-70 °C. От показателей работы блоков предварительного фракционирования сырья зависит эффективность работы реакторного блока, выход изомеризата, его состав и октановые характеристики.

В рамках представленной работы проведен анализ функционирования конденсационного оборудования ректификационной колонны выделения изопентановой фракции, одним из продуктов которой является сырье блока изомеризации. Принципиальная схема выделения изопентановой фракции приведена на рисунке. В качестве конденсационного оборудования колонны используются последовательно подключенные аппарат воздушного охлаждения (поз. ВХК-102) и водяной холодильник-конденсатор поз. ХК-102. При работе установки в летнее время среднесуточная температура воздуха часто превышает средние значения, что приводит к снижению эффективности конденса-

ции, повышению температуры изопентановой фракции и росту ее потерь с отходящими газами.

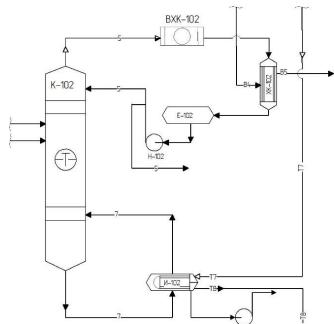


Рисунок — Принципиальная схема узла выделения изопентановой фракции: К-102 — ректификационная колонна; ВХК-102 — аппарат воздушного водяной охлаждения; И-102 — испаритель; ХК-102 — холодильник; Е-102 — рефлюксная емкость; Н-101, Н-1-2 — насосы; 5 — изопентановая фракция; 7 — сырье изомеризации; Т7 — водяной пар; Т8 — конденсат пара; В4, В5 — оборотная вода

Для достижения заданных параметров работы конденсационного оборудования в летний период на основании проведенных расчетов нами предложены следующее варианты:

- замена аппарата воздушного охлаждения поз.ВХК-102 на водяной холодильник-конденсатор;
- дооснащение действующего аппарата воздушного охлаждения поз. ВХК-102 дополнительной секцией.

Для замены действующего аппарата поз. ВХК-102 по результатам расчетов предложен водяной холодильник-конденсатор марки 1000 КНГ-6–25– М1–0/25–У–1-Б) [2]. Масса аппарата составит не более 8650 кг, материал изготовления — сталь 20. Расход воды, необходимой для работы аппарата, равен 22,53кг/с. Для дооснащения действующего аппарата поз. ВХК-102 необходима секция, состоящая из 718 труб диаметром 25 мм, длиной 4,0 м с числом ходов — 2 и площадью сечения труб — 0,124 м^2 .

Предварительные экономические расчеты показали, что, с учетом обеспечения требуемого качества продуктов разделения, наиболее предпочтительным вариантом является установка дополнительного водяного холодильника-конденсатора вместо аппарата воздушного охлаждения.

ЛИТЕРАТУРА

- 1. ГОСТ 32513-2013 Топлива моторные. Бензин неэтилированный. Технические условия. М.: Стандартинформ, 2019.
- 2. ГОСТ 15121-79. Конденсаторы кожухотрубчатые. М.: Издательство стандартов,1979.