Чистофорова Наталья Васильевна,

к.т.н., доцент, Ангарский государственный технический университет

e-mail: ryabinak@mail.ru

Ушенин Захар Сергеевич,

магистрант, Ангарский государственный технический университет

e-mail: zakhar.ushenin@yandex.ru

АНАЛИЗ ДЕЙСТВУЮЩЕЙ СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМ ПРОЦЕССОМ ИЗВЛЕЧЕНИЯ ВОДОРОДА ИЗ ВОДОРОДСОДЕРЖАЩИХ ГАЗОВ

Chistoforova N.V., Ushenin Z.S.

ANALYSIS OF THE EXISTING CONTROL SYSTEM OF THE TECHNOLOGICAL PROCESS OF HYDROGEN EXTRACTION FROM HYDROGEN-CONTAINING GASES

Аннотация. Определены параметры, которые необходимо контролировать для поддержания оптимального значения основного качественного показателя процесса. Составлена контрольная карта содержания водорода в готовом продукте на основе лабораторных данных.

Ключевые слова: водородосодержащий газ, система управления, контрольная карта, сепаратор, теплообменник, пермеатор.

Abstract. The parameters that need to be controlled have been identified to maintain the optimal value of the main qualitative indicator of the process. Based on laboratory data, a control graph of hydrogen content in the finished product.

Keywords: hydrogen-containing gas, control system, control graph, separator, heat exchanger, permeator.

На сегодняшний день водород активно используется в различных отраслях химической и нефтехимической промышленности. Водород применяют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород необходим для производства жидкого топлива гидрогенизацией углей и мазута. Водород в чистом виде практически не встречается в природе, поэтому задачи его получения, концентрирования и очистки от примесей имеют огромное значение.

Основным качественным показателем процесса является объёмная степень извлечения водорода φ_{H_2} , которая характеризует количество целевого продукта (водорода технического), полученного из принятого на установку сырья (ВСГ), и определяется формулой:

$$\varphi_{H_2} = \frac{G_{\text{H}_2} \cdot C_{\text{H}_2}}{G_{\text{BC}\Gamma} \cdot C_{\text{BC}\Gamma}} \cdot 100 \% \tag{1}$$

где $G_{\rm BC\Gamma}$ и $G_{\rm H_2}$ – расход ВСГ и водорода технического соответственно, м³/ч; $C_{\rm H_2}$ и $C_{\rm BC\Gamma}$ – содержание водорода в водороде техническом и в ВСГ соответственно, % об.

Степень извлечения (без учёта работоспособности мембран) может значительно изменяться в зависимости от параметров технологического режима пермеаторов (давление ВСГ, температура ВСГ после парового подогревателя,

давления водорода пермеата на выходе из блока пермеаторов), а также от содержания водорода в ВСГ.

Оптимальное значение φ_{H_2} во всех случаях должно составлять $\geq 85~\%$ при условии содержания водорода в ВСГ не менее 90 % об.

Основные контролируемые параметры:

- уровень конденсата в сепараторе ВСГ;
- контроль температуры ВСГ на выходе из теплообменника;
- контроль давления ВСГ на выходе из объектов;
- контроль качества водорода на выходе из объектов;
- контроль температуры водорода на выходе из объектов;
- контроль за расходом топливного газа в трубопровод сбросного газа.

На основе анализа основного качественного показателя процесса строим контрольную карту содержания водорода в готовом продукте (рисунок 1).

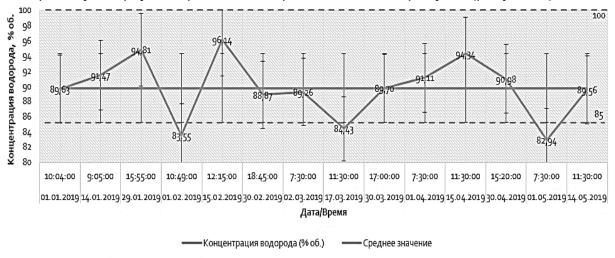


Рисунок 1 – Контрольная карта содержания водорода

Из контрольной карты видно, что процесс не всегда стабилен и степень очистки ВСГ находится ближе к нижней границе. Анализ качества целевого продукта показывает, что необходимо улучшение качества регулирования технологического процесса, для этого составляем математические модели материальных и тепловых балансов.

ЛИТЕРАТУРА

- 1. Шандуров Б.В. Технические средства автоматизации / Б.В. Шандуров, А.Д. Чудаков М.: Академия, 2007. С. 360.
- 2. Дудников Е.Г. Автоматическое управление в химической промышленности. М.: Химия, 1987. С. 368.
- 3. Иванова Г.В. Автоматизация технологических процессов основных химических производств. –СПб.: Изд-во СПбГТУ, 2003. С. 134 с.