Рябков Максим Игоревич,

магистрант, Ангарский государственный технический университет,

e-mail: Riabkov Maksim@ngs.ru

Баранова Альбина Алексеевна,

к.т.н., доцент, Ангарский государственный технический университет, e-mail: baranova2012aa@mail.ru

Скулин Александр Сергеевич,

обучающийся, Ангарский государственный технический университет,

e-mail: cfif.skulin@yandex.ru

Коцырь Алина Ильинична,

обучающаяся, Ангарский государственный технический университет,

e-mail: cfif.skulin@yandex.ru

ИССЛЕДОВАНИЕ ТЕПЛОПРОВОДНОСТИ АВТОКЛАВНОГО ГАЗОБЕТОНА Ryabkov M.I., Baranova A.A., Skulin A.S., Kotsyr' A.I. INVESTIGATION OF THE THERMAL CONDUCTIVITY OF AUTOCLAVED AER-ATED CONCRETE

Аннотация. Представлены результаты измерения коэффициентов теплопроводности автоклавных газобетонов марок D450 и D600 в сухом, водонасыщенном и мёрзлом состоянии.

Ключевые слова: коэффициент теплопроводности, автоклавный газобетон.

Abstract. The results of measuring the thermal conductivity coefficients of autoclaved aerated concrete grades D450 and D600 in the dry, water-saturated and frozen state are presented.

Keywords: coefficient of thermal conductivity, autoclaved aerated concrete.

Теплоизоляционные свойства материала зависят от соотношения объёмов воздуха, заключённого в порах, и твёрдого вещества, входящего в единицу объёма материала. Чем тоньше слой твёрдого вещества, окружающего поры, тем лучше теплозащитные свойства материала и меньше его коэффициент теплопроводности.

Содержащаяся в порах ячеистых бетонов вода увеличивает их теплопроводность, т.к. коэффициент теплопроводности воды примерно в 25 раз больше, чем у воздуха ($\lambda_{воды} = 0.569 \text{ BT/(M} \cdot {}^{\circ}\text{C})$, $\lambda_{воздуха} = 0.023 \text{ BT/(M} \cdot {}^{\circ}\text{C})$). Вода, замерзая, переходит из жидкого состояния в твёрдое, т.е. превращается в лёд, коэффициент теплопроводности которого при температуре -20 °C составляет 2,44 BT/(M·°C).

В продолжение предыдущих исследований [1÷5] целью данной работы было определить коэффициенты теплопроводности автоклавного газобетона в сухом, водонасыщенном и мёрзлом состоянии.

В экспериментах использовались образцы размером 100х100х100 мм, выпиленные из блоков автоклавного газобетона марок по средней плотности D450 и D600.

Первоначально все образцы были высушены до постоянной массы при температуре 105±5 °C, после чего с помощью прибора ИТП-МГ «Зонд» были определены их коэффициенты теплопроводности в соответствии с ГОСТ 7076. После этого образцы были погружены в ёмкость с водой. Через 7 суток водонасыщения для них были определены коэффициенты теплопроводности. Далее водонасыщенные образцы выдерживались в морозильной камере при температуре -18 °C в течение 7 суток, после этого для них также были определены коэффициенты теплопроводности. Результаты испытаний приведены в таблице.

Таблица Коэффициенты теплопроводности автоклавного газобетона в сухом, водонасыщенном и мёрзлом состоянии

Марка га- зобетона	ρ _{сух.} , кг/м ³	λ _{сух.} , Вт/(м⋅°С)	ρ _{вл.} , кг/м ³	W, %	λ _{вл.} , Вт/(м·°С)	ρ _{мёрз.} , кг/м ³	λ _{мёрз.} , Вт/(м⋅°С)
D450	434	0,118	727	67,34	0,408	715	0,494
D600	618	0,156	972	57,41	0,521	963	0,539

Экспериментально установлено, что коэффициенты теплопроводности водонасыщенных образцов увеличиваются в 3,3÷3,5 раза, у мёрзлых образцов – в 3,5÷4,2 раза по сравнению с высушенными до постоянной массы образцами.

ЛИТЕРАТУРА

- 1. Баранова А.А. Теплопроводность и термическое сопротивление неавтоклавного пенобетона на основе микрокремнезёма // Известия вузов. Инвестиции. Строительство. Недвижимость. 2020. Т. 10. № 3 (34). С. 370-377.
- 2. Рябков И.В., Баранова А.А. Теплопроводность и термическое сопротивление слоя неавтоклавного пенобетона на основе микрокремнезёма // Современные технологии и научно-технический прогресс. 2020. Т. 1. № 7. С. 185-186.
- 3. Рябков И.В., Баранова А.А. Сравнительный анализ результатов измерений теплопроводности пенобетонов на основе микрокремнезёма // Современные технологии и научно-технический прогресс. 2020. Т. 1. № 7. С. 183-184.
- 4. Baranova A., Ryabkov I. Investigation of thermal conductivity of non-autoclaved foam concrete based on microsilica // В сборнике: IOP Conference Series: Materials Science and Engineering. New Technologies and Special-Purpose Development Priorities. 2019. C. 012010.
- 5. Рябков И.В., Баранова А.А. Влияние средней плотности и влажности пенобетона на основе микрокремнезёма на коэффициент теплопроводности // Современные технологии и научно-технический прогресс. 2019. Т. 1. С. 204-205.