потоком газа в зависимости от частоты вращения и мощности двигателя. Двухтопливная конверсия практически не требует модификации двигателя и приносит преимущества в любом применении (см. рис.2).

Также немаловажной является проблема в квалифицированном персонале для обслуживания и управления электростанцией в маленьких поселках с населением 20-50 жителей. Для решения этого вопроса есть возможность создания на платформе СомАр электростанции четвертой степени автоматизации с возможностью подачи электроэнергии по графику или по удаленной команде, контроля состояния технических жидкостей и топлива для ДГУ, поддержания в рабочем состоянии аккумуляторных батарей для противопожарно-охранного комплекса и систем коммуникации (наземной станции спутникового интернета). Присутствие персонала на

этих объектах потребуется только для проведения ТО (ориентировочно 2 рабочих смены 5 раз в год) и приема топлива на склад (2 рабочих смены 1 раз в год).

К тому же компания СотАр ведет дружественную для организаций политику технической поддержки и обучения персонала, не делая упор на использовании при проектировании, монтаже и наладке оборудования только штатных обученных сертифицированных специалистов, а готовы с нуля обучить персонал партнера и оказать безвозмездную техническую поддержку. Это приводит к повышению уровня компетенции персонала на крайнем севере, повышает интерес к работе, а также сокращает издержки на оплату обслуживания оборудования предприятием и уменьшает время на устранения неполадок в системе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сайт www.comap-control.com. [Электронный ресурс]
- 2. Базовая подготовка Стандартный контролллер IG/IM/IS-NT (Вест Бромвич,

Великобритания). [Электронный ресурс]

3. Обучение Работе с Виртуальными Практическими Комплексными Приложениями (онлайн). [Электронный ресурс]

УДК 681.5

Федорещенко Николай Васильевич,

к.т.н., доцент кафедры «Электропривод и электрический транспорт», ФГБОУ ВО «Иркутский национальный исследовательскийй технический университет», e-mail: n-fed38@mail.ru

Левитин Михаил Антонович.

обучающийся группы ЭАПб -18 -1, ФГБОУ ВО «Иркутский национальный исследовательский технический университет», e-mail: mlev@mail.ru

ПРЕДВАРИТЕЛЬНЫЙ АНАЛИЗ ПРИ МОДЕРНИЗАЦИИ МЕТАЛЛОРЕЖУЩИХ СТАНКОВ

Fedoreshchenko N.V., Levitin M.A.

PRELIMINARY ANALYSIS OF THE MODERNIZATION OF METAL-CUTTING MACHINES

Аннотация. Показаны методика модернизации и анализ выбора электродвигателя. Установлено, что целесообразно проводить модернизацию на основе технико-экономического обоснования в несколько этапов с разработкой и согласованием технической документации на каждом этапе.

Ключевые слова: этапы, металлорежущий станок, модернизация, электродвигатель.

Abstract. The method of modernization and analysis of the choice of the electric motor are shown. It has been established that it is expedient to carry out modernization based on a feasibility study in several stages with the development and approval of technical documentation at each stage.

Keywords: *stages, metal-cutting machine, modernization, electric motor.*

Эксплуатация вполне работоспособных, но технически устаревших металлорежущих станков (МРС) сдерживает рост производительности труда. Анализ парка станков предприятий показывает, что большинство их – это станки 80-х гг. выпуска. Среди них около 30% имеют только моральный износ приводов, систем управления, датчиков, остальные станки устарели как физически, так и морально. Если физический износ механики можно устранить проведением капитального ремонта, включающего восстановление направляющих, замену деталей шпиндельного узла, ходовой части приводов и т.д., то моральный износ электрической части компенсируется только модернизацией. И этот путь экономически предпочтительнее, чем приобретение новых МРС [1, 2].

Под модернизацией станков будем понимать приведение их в соответствие с современными требованиями путем внесения частичных изменений и усовершенствований в конструкцию станков. Целью модернизации являются: повышение производительности МРС, улучшение характеристик обработки деталей, обеспечение работы станка в автоматизированном производстве.

Модернизация систем управления может включать замену:

устройства числового программного управления (УЧПУ) и измерительной системы;

УЧПУ, системы управления приводами и измерительной системы;

УЧПУ, системы управления приводами, двигателей, преобразователей и измерительной системы.

Самым недорогим вариантом модернизации является первый вариант, а самым дорогостоящим — третий. Выбор варианта модернизации зависит от экономических возможностей предприятия, а также от технического состояния станка и системы управления. Например, довольно часто системы управления приводами подач находятся в хорошем состоянии, в этом случае наиболее приемлемым является первый вариант [3].

Проведение модернизации целесообразно выполнять поэтапно, с разработкой для каждого этапа технического задания, протокола оценки состояния, технического предложения и (или) других документов. Рекомендуется следующая последовательность выполнения модернизации [1].

- 1 этап. Анализ технического состояния объекта, изучение документации.
- 2 этап. Разработка технического задания (ТЗ) на модернизацию всего MPC.
- 3 этап. Оценка состояния кинематической части станка. Составление документа о техническом состоянии механики объекта.
- 4 этап. Разработка схемы электроавтоматики станка в соответствии с ТЗ.
- 5 этап. Проектирование систем электропривода объекта согласно ТЗ (техническое предложение).
- 6 этап. Монтаж и наладка оборудования в соответствии со схемой электроавтоматики.

7 этап. Согласование работы УЧПУ с новым оборудованием.

На первом этапе необходимо, чтобы быть конкурентоспособными и экономически эффективными, вновь разрабатываемые и модернизуемые механизмы с системами позиционирования должны иметь основные характеристики лучше, чем у существующих.

Достижение этого возможно не только при проектировании новых электроприводов, но и при модернизации работающих [1, 3]. Моральное и физическое старения отдельных элементов МРС протекает по-разному. Поэтому при модернизации электроприводов на первом этапе необходимо провести функциональный анализ МРС [2]. Создание и выпуск изделий на уровне лучших мировых образцов требуют углубленного изучения конструкции и структуры технических объектов (ТО), которые требуется усовершенствовать. При таком изучении в первую очередь необходимо понять и уточнить следующее:

- какие функции выполняет каждый элемент ТО и как его элементы функционально связаны между собой;
- какие физические операции (преобразования) выполняет каждые элемент и как они взаимосвязаны между собой:
- на основе каких физико-технических эффектов работает каждый элемент ТО и как они взаимосвязаны между собой.

При выяснении этих вопросов и появляется четкое и цельное представление об устройстве ТО. На основании этого принимается решение требуется ли усовершенствовать данный объект с функциональной и физической точек зрения. Без такого представления затруднительно заниматься поис-

ком наиболее эффективного нового технического решения.

Функциональный анализ (ФА) является наиболее общим и универсальным подходом к решению технических задач при проектировании и модернизации [2]. Как метод исследования он может применяться к различным аспектам ТО:

определение функций объекта, компонентов, связей;

оценка уровня выполнения;

оценивание функции относительно технологии (главная, основная, вспомогательная, дополнительная).

Применение ФА возможно на различных этапах создания и модернизации TO:

при анализе потребностей;

при формировании цели, например, повышение качества обработки металлов резанием:

формулировке функций;

при синтезе физического принципа действия и технического решения.

Проведение ФА и поиск возможных направлений совершенствования ТО целесообразно проводить следующим образом [2].

1-ый шаг. Формулируется идеальное (желаемое) техническое решение ТО в целом и его составных частей.

2-ой шаг. Проводится оценка уровня выполнения функции для отдельных компонентов ТО (качественная оценка: адекватный, недостаточный, избыточный уровни). Выявляются и упраздняются функциональная избыточность и нежелательные эффекты.

3-ий шаг. Оценивается влияние количественного изменения параметров на выполняемые функции ТО и его компонентов.

4-ый шаг. Анализ возможной структурной перестройки технической системы и перераспределение функций между компонентами, а также объединение нескольких функций в одном компоненте (универсализация) и разделение функций (специализация). Желательно передавать функции в надсистему, т.е. в объект более высокого уровня, например, ЭВМ.

5-ый шаг. Сформулировать противоречия, имеющиеся в ТО и наметить пути их устранения. Рассмотреть возможность применения другого физического принципа действия для выполнения функций.

Описание функции TO должно включать следующую информацию:

- действие, производимое TO и приводящее к желаемому результату;
- объект (объекты), на который направлено это действие;
- особые условия и ограничения, при которых выполняется действие.

При описании функции всегда имеется в виду класс ТО, которому должно соответствовать это описание. В свою очередь, широта класса ТО зависит от решаемых конкретных задач, в которых используется описание функции. Например, при инженерном прогнозировании обычно имеют в виду весьма широкий класс, при проектировании – значительно более узкий, а при поиске неисправностей – класс конкретных одинаковых ТО.

В целом описание функции необходимо формулировать конкретнее, короче и проще и не стремиться в него включать ТЗ на проектирование, которое кроме функции ТО включает еще список специальных требований. Каждый ТО находится в определенном взаимодействии с окружающей средой (ОС). Для конкретного ТО в качестве ОС могут выступать его надсистема, и другие ТО, которые находятся в функциональном или вынужденном взаимодействии с рассматриваемым и оказывают заметное влияние на его проектно-конструкторское решение [1, 2].

Основным этапом модернизации является пятый этап. Исходными данными для выполнения технического предложения служат параметры, заложенные в ТЗ. При выборе системы электропривода следует учитывать, как технические, так и экономические характеристики. Не следует оставлять без внимания и эксплуатационные параметры.

На большинстве отечественных станков с регулируемым электроприводом ранее устанавливались двигатели постоянного тока [3, 4]. Они относительно надежны и неприхотливы в эксплуатации. Однако это не относится к их щеточно-коллекторным узлам, которые требуют регулярного контроля и обслуживания. В недостатки их, кроме этого, следует записать и настройку приводов постоянного тока. Асинхронный электродвигатель с датчиком поворота на валу и преобразователем частоты с обратной связью - наиболее простой вариант замены [3, 4].

Асинхронный электродвигатель с преобразователем частоты без обратной связи целесообразно использовать, когда не требуются относительно высокие характеристи-

ки обработки деталей. Бесколлекторный двигатель (с возбуждением от постоянных магнитов) с резольвером или декодером и преобразователем частоты - это лучший вариант замены, но не самый экономичный. Бесколлекторный электродвигатель выбирается по требуемой частоте вращения вала и максимальному крутящему моменту. Эти электромоторы при меньших габаритах обеспечивают больший крутящий момент, что может являться решающим фактором при недостатке места для монтажа. В обслуживании они практически не нуждаются.

Бесколлекторный двигатель с постоянными магнитами, датчиком положения ротора, преобразователем частоты и безлюфтовым редуктором — очень хорошее решение для приводов, где не требуется большая скорость

Линейный электродвигатель прямого привода с преобразователем частоты — относительно новое явление на станочном рынке МРС [4]. Он имеет серьезные преимущества по сравнению с вращающимися электродвигателями — отсутствие редуктора и шариковинтовой пары, превосходная динамика, большая скорость перемещения, отсутствие люфтов.

Данная методика [1, 2, 5] неоднократно использовалась на различных этапах выполнения выпускных квалификационных работ бакалаврами и магистрами. Объектами анализа были насосная станция и различные виды металлорежущих станков. Результаты — положительные, найдены новые технические решения, оптимизированы режимы работы и технические характеристики.

СПИСОК ЛИТЕРАТУРЫ

- 1. Игнатьев Н.П. Проектирование нестандартного оборудования: Справочнометодическое пособие г. Азов: ООО Азов Печать, 2013. 484c.
- 2. Ревенков А.В., Резчикова Е.В. Теория и практика решения технических задач: М.: ФОРУМ, 2008.- 384 с.: ил.- (Высшее образование).
- 3. Судьин, Е.Ф. Модернизация станков с ЧПУ: учебное пособие. М.:Машиностроение, 1990, 40 с.
 - 4. Металлорежущие станки. В 2 т. Т. 1:
- учебник для студ. учреждений высш. проф. образования / [А.М. Гаврилин, В.И. Сотников, А.Г. Схиртладзе, Г.А. Харламов]. М.: Издательский центр «Академия», 2012. 304 с.
- 5. Федорещенко Н.В. и др. Проектирование систем позиционирования для автоматизированного производства. В книге: Повышение эффективности производства и использования энергии в условиях Сибири. Иркутск, ИрГТУ, 2011 г.