Истомина Алена Андреевна,

к.т.н., доцент, Ангарский государственный технический университет, e-mail: alenaist@yandex.ru,

Некрасов Леонид Николаевич,

магистрант, Ангарский государственный технический университет

ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ КИНЕТИКИ ПРОЦЕССА ЭЛЕКТРООСАЖДЕНИЯ НИКЕЛЯ

Istomina A.A., Nekrasov L.N.

ELECTROCHEMICAL METHODS FOR STUDYING THE KINETICS OF NICKEL ELECTRODEPOSITION

Аннотация. Получение качественно новых электрохимических покрытий никелем тесно связано с изучением кинетики электродных процессов и влияния добавок на механизм электрохимической реакции и наиболее информативными методами являются электрохимические методы анализа.

Ключевые слова: никелирование, никель, вольтамперометрия, поляризация, механизм, кинетика

Abstract. Obtaining qualitatively new electrochemical nickel coatings is closely related to the study of the kinetics of electrode processes and the effect of additives on the mechanism of electrochemical reaction – electrochemical methods are the most informative methods.

Keywords: nickeling, nickel, voltammetry, polarization, mechanism, kinetics

В настоящее время большое внимание уделяется разработке новых технологий нанесения качественных никелевых покрытий, поиску эффективных добавок к электролитам, позволяющих значительно улучшить процесс осаждения и получать покрытия с оптимальным набором полезных свойств. Никелевые покрытия широко применяются благодаря высокой антикоррозийной стойкости в атмосфере, в растворах щелочей и некоторых органических кислотах. Введение органических добавок (блескообразователей) в состав электролитов никелирования позволяет получать качественные блестящие покрытия без существенного снижения скорости электродного процесса, обладающие полезными физико-химическими свойствами.

Получение качественно новых покрытий невозможно без проведения исследований электролитов, изучения кинетики электроосаждения никеля в присутствии органических добавок, понимания механизма протекания электродных реакций. На сегодняшний день наиболее подробную картину и понимание кинетики электрохимических процессов нам демонстрируют электрохимические методы анализа — вольтамперометрия, метод поляризационных кривых.

Вольтамперометрия – один из наиболее сложных электрохимических методов. С помощью циклической вольтамперометрии можно получить объемную экспериментальную информацию о кинетике и термодинамике многих химических систем. Потенциал в данном методе изменяется циклически, например, по приведенным уравнениям реакций:

$$Ox^{+n} + n\overline{e} = Red$$

 $Red - n\overline{e} = Ox^{+n}$

происходит циклическое изменение состояния исследуемого вещества. Графическим отображением происходящих на рабочем электроде электрохимических реакций является циклическая вольтамперограмма (ЦВА), которая состоит из двух ветвей — анодной и катодной. Регистрация циклических вольтамперограмм проводится в специальной трехэлектродной ячейке, которая состоит из электрохимической ячейки с тремя электродами (вспомогательный, рабочий и электрод сравнения), погруженными в раствор электролита и связанными с потенциостатом.

По циклическим вольтамперограммам определяют потенциалы катодного и анодного пиков $E_{n-\kappa}$ и E_{n-a} , соответствующие им катодные и анодные токи пиков I_{n-a} и $I_{n-\kappa}$, потенциалы полуволны $E_{1/2\kappa}$ и $E_{1/2a}$.

При этом скорость изменения потенциала и пределы изменения потенциала остаются независимыми переменными. Скорость изменения потенциала является важной для понимания и распознавания механизма процесса, при этом правильный выбор пределов изменения потенциала может позволить избежать влияния других побочных процессов [1].

Метод поляризационных кривых позволяет более детально рассмотреть один из электродных процессов отдельно — например, катодное электроосаждения никеля. С помощью этого метода изучается зависимость между плотностью тока i, отражающей скорость процесса, и величиной потенциала электрода E. При электролизе потенциал электрода сдвигается от своего равновесного значения E_p на величину ΔE (поляризация электрода) и тем сильнее, чем больше плотность поляризующего тока.

Данный метод позволяет определить природу замедленной стадии и оценить влияние органических добавок на поляризацию электродного процесса путем сопоставления экспериментальных зависимостей с известными кинетическими уравнениями перенапряжений: электрохимического (стадия разряда или перехода электрона), диффузионного (стадия транспортировки), реакционного (стадия химических реакций и превращений) и фазового (стадия кристаллизации). Поляризационные кривые, построенные в полулогарифмических координатах, позволяют определить ток обмена i_0 и коэффициент переноса α , что является основными кинетическими параметрами электродного процесса, что дает по итогу сравнить качество полученных покрытий в выбранном интервале плотностей тока.

ЛИТЕРАТУРА

1. **Будников, Г.К.** Основы современного электрохимического анализа / Г.К. Будников, В.Н. Майстренко, М.Р. Вяселев. – Москва: «Мир», 2003. – 592 с.