Щербин Сергей Анатольевич,

к.т.н., доцент, Ангарский государственный технический университет, e-mail: dekan ftk@angtu.ru

Коряченко Антон Олегович,

магистрант, Ангарский государственный технический университет, e-mail: koriachenkoanton@mail.ru

СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ВОЗДУШНОГО КОНДЕНСАТОРА ПРОПАНА

Shcherbin S.A., Koriachenko A.O.

A METHOD FOR INCREASING THE EFFICIENCY OF A PROPANE AIR CONDENSER

Аннотация. Рассмотрен способ оценки эффективности теплоотдачи от наружной поверхности оребренных теплообменных труб к атмосферному воздуху в аппаратах воздушного охлаждения.

Ключевые слова: теплопередача, теплоотдача, аппарат воздушного охлаждения, коэффициент оребрения.

Abstract. A method for evaluating the efficiency of heat transfer from the outer surface of finned heat exchange pipes to atmospheric air in air cooling apparatus is considered.

Keywords: heat transfer, air cooling apparatus, coefficient of finning.

В работе приведены результаты исследования процесса теплопередачи в аппарате воздушного охлаждения (АВО), предназначенном для конденсации пропана, при разных коэффициентах оребрения с целью увеличения теплосъема и, соответственно, эффективности работы конденсатора. Для этого был выполнен анализ процессов теплоотдачи от пропана в трубном пространстве к стенке трубы и от стенки трубы к воздуху. В результате работы был определен оптимальный, для заданных условий, коэффициент оребрения, при котором теплоотдача от наружной поверхности труб к воздуху будет наиболее интенсивной. Примененный подход может быть использован при реконструкции АВО.

Площадь теплопередающей поверхности конденсатора F, M^2 , рассчитывается из основного уравнения теплопередачи:

$$F = Q/(K\Delta t_{cp}),$$

где Q — мощность теплового потока в аппарате, Вт; Δt_{cp} — средняя разность температур теплоносителей по всей поверхности теплообмена, K; K — коэффициент теплопередачи для пучка оребренных труб, Вт/(м 2 K):

$$K = \frac{1}{1/\alpha_1 + r_{\rm 31} + \delta/\lambda + r_{\rm 32} + 1/\left(\alpha_{\rm np} K_{\rm op}\right)'}$$

где α_1 и α_2 – коэффициенты теплоотдачи теплоносителей, BT/(м²K); r_{31} и r_{32} – термические сопротивления загрязнений по сторонам стенки, (м²K)/Вт; δ – толщина стенки трубы, м; λ – коэффициент теплопроводности материала стенки, BT/(мK); $\alpha_{\rm пp}$ – приведенный коэффициент теплоотдачи к воздуху, BT/(м²-K); $K_{\rm op}$ –

коэффициент оребрения трубы. равный отношению площадей наружных поверхностей оребренной и неоребренной труб.

Интенсивность теплоотдачи от наружной поверхности оребренной трубы к воздуху оценивалась по величине произведения $\alpha_{\rm пр} K_{\rm op}$, а эффективность работы конденсатора — по величине коэффициента теплопередачи. Исследование проведено при значениях коэффициента оребрения от 9 до 21. Результаты представлены на рисунке 1.

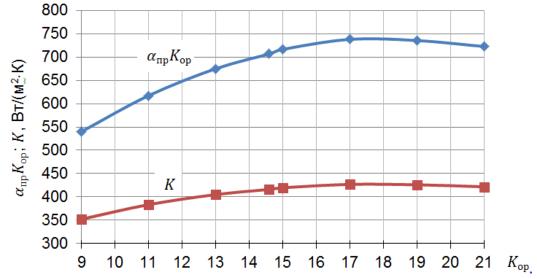


Рисунок 1 – Зависимость произведения $\alpha_{\rm np} K_{\rm op}$ и коэффициента теплопередачи K от коэффициента оребрения трубы $(K_{\rm op})$

Очевидно, что величины произведения $\alpha_{\rm np} K_{\rm op}$ и K имеют наибольшие значения при $K_{\rm op}=17$, которое является оптимальным для рассматриваемого аппарата.

Замена трубного пучка может способствовать повышению эффективности теплообменных аппаратов, однако вряд ли будет экономически целесообразной, поскольку пучки оребренных труб являются наиболее дорогими элементами АВО и их замена потребует больших капитальных затрат, сопоставимых со стоимостью теплообменного аппарата. Поэтому рассмотренный подход следует применять на стадии проектирования теплообменных аппаратов с учетом особенностей технологического процесса.

ЛИТЕРАТУРА

- 1. **Щербин С.А., Коряченко А.О.** Повышение эффективности теплоотдачи в аппаратах воздушного охлаждения // Современные технологии и научнотехнический прогресс. 2021. С. 105-106.
- 2. **Щербин С.А., Коряченко А.О.** Повышение эффективности теплоотдачи в воздушном конденсаторе пропана // Сборник научных трудов АнГТУ. 2021. С. 99-102.