Пильцов Михаил Владимирович,

к.т.н., доцент, Ангарский государственный технический университет,

e-mail: mpilcov@yandex.ru Горохов Олег Андреевич,

магистрант, Ангарский государственный технический университет,

e-mail: oleglego2016@yandex.ru

РАЗРАБОТКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ПО ОПРЕДЕЛЕНИЮ ДОПУСКОВ ТЕРМОРЕЗИСТИВНЫХ ПРЕОБРАЗОВАТЕЛЕЙ

Gorokhov O.A., Pilcov M.V.

DEVELOPMENT OF THE SOFTWARE FOR DETERMINING THE THERMORESISTANCE CONVERTERS' TOLERANCES

Аннотация. Рассмотрен вариант реализации способа автоматизированного определения допусков терморезистивных преобразователей.

Ключевые слова: терморезистивный преобразователь, допуск, программное обеспечение.

Abstract. Variant of the automated way to determine the thermoresistance convertors' tolerances.

Keywords: thermoresistance converter, tolerance, software.

В устройствах, где требуется контролировать температуру различных объектов или окружающей среды, находят своё применение термометры сопротивлений.

У терморезисторов есть четыре класса допусков – AA, A, B и C. Расчёт допусков можно производить вручную. Но в таком случае есть вероятность ошибки в ходе вычисления. Более того, при работе с большим объёмом данных вероятность возникновения ошибки может возрасти. Уменьшить вероятность возникновения ошибок в расчётах и ускорить процесс расчёта можно за счёт разработки ПО, в котором все основные формулы и её константы уже загружены в код и изменению не подлежат.

Термопреобразователи сопротивления (резистивные термопреобразователи, термометры сопротивления, терморезисторы) являются средствами измерения температуры. По распространённости являются вторыми после термоэлектрических преобразователей [1]. Принцип их работы основан на зависимости изменения сопротивления вещества (металлов или их сплавов) при изменении температуры [2].

Согласно ГОСТ 6651-2009 чувствительные элементы термопреобразователей сопротивления изготавливаются из следующих металлов: никеля, меди и платины [3].

Разработанная на языке Python с использованием библиотеки PyQt5 программа принимает на вход значения сопротивлений и температур, измеренные пользователем, величину номинального сопротивления и тип прибора, для которого планируется провести процесс расчёта. Далее, по нажатию кнопки, ини-

циализируется расчёт, чьи результаты отображаются в специальных окнах. Пример окна программы с результатами процесса определения допусков приведён на рисунке 1.

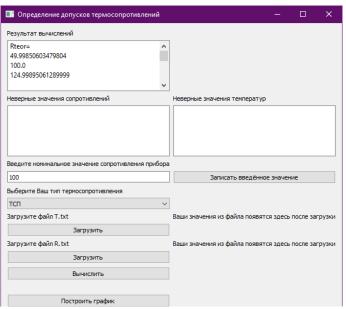


Рисунок 1 — Окно программы по определению допусков термосопротивлений с результатами расчёта

Помимо вычислений программа может построить график зависимости сопротивления прибора от его температуры. Благодаря этой функции пользователь сможет проверить корректности экспериментальных данных. В случае корректных данных программа выведет график, который должен иметь линейный вид.

В заключение можно сделать следующий вывод: программа может найти своё применение на производстве термометров сопротивлений. Также есть потенциал развития программы путём добавления функционала для определения допусков термоэлектрических преобразователей и последующего создания комплексного программного продукта.

ЛИТЕРАТУРА

- 1. **Денисенко, В. В**. Компьютерное управление технологическим процессом, экспериментом, оборудованием / В. В. Денисенко. Москва : Горячая линия Телеком, 2009. 608 с.
- 2. **Шибеко, А. С**. Строительная теплофизика и теплотехнические измерения: учебное пособие / А. С. Шибеко, М. А. Рутковский. Москва; Вологда: Инфра-Инженерия, 2020. 288 с.
- 3. ГОСТ 6651-2009. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытания.