Сергачева Евгения Алексеевна,

студентка, Ангарский государственный технический университет, e-mail: evserga4ewa@yandex.ru

Филиппова Тамара Матвеевна,

к.х.н., доцент, Ангарский государственный технический университет, e-mail:ripr@angtu.ru

ЭКОЛОГО-ЭКОНОМИЧЕСКАЯ ОЦЕНКА ВНЕДРЕНИЯ СТАНЦИИ ОЧИСТКИ СТОКОВ НА ПРОЕКТИРУЕМОМ ПОЛИГОНЕ ТВЕРДЫХ КОММУНАЛЬНЫХ ОТХОДОВ (Г. САЯНСК)

Sergacheva E.A., Filippova T.M.

ECOLOGICAL AND ECONOMIC ASSESSMENT OF THE INTRODUCTION OF A WASTEWATER TREATMENT PLANT AT A MUNICIPAL SOLID WASTE LAND-FILL (SAYANSK)

Аннотация. Рассмотрен состав фильтрата полигона твёрдых коммунальных отходов (ТКО) г. Саянска с последующей утилизацией его на станции «Осмотикс».

Ключевые слова: полигон захоронения ТКО, сбор, очистка, утилизация свалочного фильтрата.

Abstract. The composition of the filtrate from the solid municipal waste (MSW) landfill in Sayansk with its subsequent disposal at the Osmotics station is considered.

Keyword: landfill landfill, collection, cleaning, disposal of landfill filtrate.

Полигон твердых коммунальных отходов (ТКО) — комплекс природоохранительных сооружений, предназначенных для складирования, изоляции и обезвреживания ТКО. Площадка полигона ТКО: геометрический объем — 380 561 $\rm m^3$, в том числе объем ТКО — 294 328 $\rm m^3$, изолирующие слои грунта — 86 233 $\rm m^3$, расположена в г. Саянске Иркутской области, в лесном массиве на расстоянии 3,6 км южнее Ленинградского проспекта г. Саянск. Территория полигона захоронения ТКО общей площадью 8,3 га, где 68 594 $\rm m^2$ составляет вновь проектируемый полигон ТБО, а 14 406 $\rm m^2$ — отвод под существующую свалку ТБО. Полигон расположен на землях Администрации городского округа муниципального образования [1,2]. На каждом участке полигона выполняется дренажная канава, по которой фильтрат поступает в регулирующую ёмкость (объем 25 $\rm m^3$), а из неё в насосную станцию перекачки фильтрата [3].

Фильтрат полигонов ТКО относятся к высоко загрязненным сточным водам, характеризуется высоким содержанием токсичных органических и неорганических веществ, содержит многочисленные компоненты распада органических соединений, что определяет темно-коричневый цвет и неприятный запах фильтратных вод. «Молодой» фильтрат образуется на начальной стадии эксплуатации полигона после 2-7 лет складирования и захоронения. «Старый» фильтрат формируется в основном на постэксплуатационном этапе жизнедеятельности полигона. Состав фильтрата меняется во времени, что отражено в таблице 1 [4].

Таблица 1 Тип фильтрата полигона ТКО и основные изменяющиеся показатели

	«Молодой»	«Старый»
Наименование параметра	полигон – кислот-	полигон – ме-
	ная фаза	тановая фаза
pH	6,0-7,2	7,5-8,5
XПК, мг О₂/дм³	900-40000	450-9000
БПК, мг О₂/дм³	600-27000	20-700
Органические кислоты, мг/дм ³	1400-6900	5-1100
Галогенорганические соединения, мг/дм ³	260-6200	195-3200
Аммонийный азот, мг/дм ³	27-5000	27-5000
Fe ²⁺ , мг/дм ³	3-500	4-125
Ca ²⁺ , мг/дм ³	80-2300	50-1100
Mg ²⁺ , мг/дм ³	30-600	25-300
SO ²⁻ 4, мг/дм ³	35-950	25-250
Cl ⁻ , мг/дм ³	300-12500	300-12500
Zn ²⁺ , мг/дм ³	2,0-16,0	0,09-3,5

Для предотвращения загрязнения поверхностных вод предусмотрена система сбора и очистка фильтрата с последующей утилизацией на станции «Осмотикс».

Внедрение станции очистки «Осмотикс», позволяет уменьшить сброс загрязняющих веществ в р. Мальта на 11,5 т/год, экономический ущерб от сбросов снизится в \sim 30 раз. Период окупаемости проекта - 4,5 года.

ЛИТЕРАТУРА

- 1. **Поворов А. А., Павлова В.Ф.** очистка дренажных вод полигонов твердых бытовых отходов [Электронный ресурс] // http://zaobmt.com (дата обращения: 22.03.2022).
 - 2. Правила охраны поверхностных вод. М., 1991.
- 3. СанПиН 2.1.3684-21 «Санитарно-эпидемиологические требования к содержанию территорий городских и сельских поселений, к водным объектам, питьевой воде и питьевому водоснабжению, атмосферному воздуху, почвам, жилым помещениям, эксплуатации производственных, общественных помещений, организации и проведению санитарно-противоэпидемических (профилактических) мероприятий» [Электронный ресурс] // https://docs.cntd.ru/document/ (дата обращения: 29.03 2022).
- 4. Рекомендации по расчёту систем сбора, отведения и очистки поверхностного стока с селитебных т5ерриторий, площадок предприятий и определению условий выпуска его в водные объекты (ГНЦ ФГУП «НИИ ВОДГЕО», Москва 2006 г.).