СПИСОК ЛИТЕРАТУРЫ

- 1. **Антонов, Д. В.** Основные принципы развития транспортных систем городов / Д.В. Антонов, О.А.Лебедева // Вестник Ангарской государственной технической академии. 2014. № 8. С. 149-155.
- 2. **Лебедева, О. А.** Моделирование грузовых матриц корреспонденций гравитационным и энтропийным методами / О. А. Лебедева, Д. В. Антонов // Вестник Иркутского государственного технического университета. 2015. № 5 (100). С. 118-122.
- 3. **Гозбенко, В. Е.** Совершенствование транспортно-экспедиционного обслуживания грузовладельцев / В. Е. Гозбенко, М. Н. Крипак, А. Н. Иванков // Иркутск,2011.
- 4. **Колесник, М. Н.** Алгоритм автоматизированного выбора подвижного состава / М. Н. Колесник, В. Е. Гозбенко // Современные технологии. Системный анализ. Моделирование. 2007. № 4 (16). С. 45-47.
- 5. **Полтавская, Ю. О.** Методы сбора данных о продолжительности движения на маршруте и требования к объему выборки / Ю.О. Полтавская // Вестник Ангарского государственного технического университета. 2018. № 12. С. 192-195.
- 6. **Wilson, A. G.** A statistical theory of spatial distribution models / A. G. Wilson // Transportation Research, 1B: (1967), 253-269.

УДК 656.02

Лебедева Ольга Анатольевна,

к.т.н., доцент кафедры «Управление на автомобильном транспорте», ФГБОУ ВО «Ангарский государственный технический университет», тел.: +7(952)6326611, e-mail: kravhome@mail.ru

Савватеева Екатерина Юрьевна,

студент кафедры «Управление на автомобильном транспорте», ФГБОУ ВО «Ангарский государственный технический университет», тел.:+7(952)6336370, e-mail: savvateeva.ket@gmail.com

СВЯЗЬ МАКСИМИЗАЦИИ ЭНТРОПИИ И КОНЦЕПЦИИ ЭКОНОМИЧЕСКОЙ МОДЕЛИ ПОЛЕЗНОСТИ В ТРАНСПОРТНОЙ СИСТЕМЕ

Lebedeva O.A., Savvateeva E.Yu.

RELATIONSHIP OF ENTROPY MAXIMIZATION AND THE CONCEPT OF ECONOMIC UTILITY MODEL IN THE TRANSPORT SYSTEM

Аннотация. Целью исследования является изучение взаимосвязи между методами максимальной энтропии и концепции экономической полезности при распределении поездок в транспортной системе.

Ключевые слова: энтропия, методы максимизации, экономическая модель.

Abstract. The aim of the article is to study the relationship between maximum entropy methods and the concept of economic utility in the distribution of trips in a transport system.

Keywords: *entropy, maximization methods, economic model.*

В последние годы все большую актуальность приобретает решение транспортных задач относительно моделирования в городской среде. Общий подход основан на концепции энтропия и принципах ее оценки [1-7]. Альтернативный вариант решения задачи лежит через концепцию экономической модели полезности (взаимосвязь между максимальной энтропией и максимальной производительностью). Целью исследования является изучение эквивалентности и взаимосвязи между этими двумя принципами в контексте распределения поездок.

Энтропийный подход распределения поездок (информационная энтропия)

Рассмотрим модель города с центральным деловым районом и набор производственных площадок $\{i, i=1, 2, ..., n\}$ и набор рабочих мест или секторов $\{j, j=1, 2, ..., m\}$ в центральном районе [8-10].

Пусть T_{ij} — количество поездок, исходящих из i-го места расположения (пункт отправления) до j-го рабочего места (пункт назначения). Тогда энтропия распределения поездок задается:

$$S = -\sum_{i=1}^{n} \sum_{j=1}^{m} T_{ij} \cdot \ln T_{ij}$$
 (1)

Предположим, что общее количество поездок, исходящих из объекта i, и общее число лиц, занятых на j-м рабочем месте:

$$\sum_{j=1}^{m} T_{ij} = A_i, (i = 1, 2, ..., n)$$

$$\sum_{i=1}^{n} T_{ij} = A_j, (j = 1, 2, ..., m)$$
(2)

Общая стоимость перевозки фиксированная:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} T_{ij} \cdot C(r_{ij}) = C \tag{3}$$

где r_{ij} — расстояние j-го сектора в центральном районе города от i-го места расположения; $C(r_{ii})$ — функция затрат.

Ограничения (2) и (3) недостаточны для определения значения T_{ij} . Однако этот показатель возможно оценить по максимальной энтропии. В соответствии с этим принципом, наименее смещенным будет то распределение, которое максимизирует энтропию S, заданную (1), с учетом ограничений (2) и (3). Максимальная доходность является:

$$T_{ij} = a_i \cdot b_j \cdot e^{-\lambda \cdot C(r_{ij})} \tag{4}$$

где параметры a_i , b_j и λ определяются уравнениями:

$$j=1$$
 mai $bj \cdot e^{-\lambda} \cdot Crij=Ai$
($i=1,2,...,n$) $i=1$ nai $bj \cdot e^{-\lambda} \cdot Crij=Bj$
($j=1,2,...,m$), (5)

а также

$$\sum_{i=1}^{n} \sum_{j=1}^{m} a_i \cdot b_j \cdot C(r_{ij}) \cdot e^{-\lambda \cdot C(r_{ij})} = \hat{C} \quad (6)$$

Выше распределение определялось как задача теории информации. Поскольку доступная информация (или ограничения) недостаточны для однозначного определения точного распределения, возможно использование принципа максимальной энтропии. Рассмотрим построение экономической модели поведения, связанной с выбором пути поездки. Разделяют поездки в зависимости от цели. Считается, что распределение поездок является результатом некоторых решений. Так как человек старается связывать место жительства с местом приложения труда по кратчайшему маршруту, насколько это возможно при ограничениях из доступных ресурсов.

Человек, рассматривающий различные потенциальные места жительства, ассоциирует рейтинг или индекс полезности. Пусть функция плотности вероятности полезности x для конкретного места i равна $f_i(x), x \geq a > 0$. Тогда вероятность того, что что-то в таком месте имеет полезность, равную u или больше, чем u, определяется как:

$$P(u) = \int_{u}^{\infty} f_i(x) \, dx \tag{7}$$

Индекс полезности включает в себя размер арендной платы (стоимости жилья), доступности учебных и медицинских учреждений, наличие газификации, электричества, отопления, водоснабжения, торговых комплексов, за исключением расстояния от центрального района. Таким образом, чистая полезность равна полезности за вычетом транспортных расходов ($u-Kr_{ij}$), где r_{ij} — расстояние i-го сектора от j-го рабочего места в центральном районе города, а K- коэффициент преобразования расстояния в полезность.

Человек всегда пытается максимизировать чистую полезность. Поскольку финансовые возможности населения различны, то выбор может быть сделан в пользу жилья с удовлетворительным уровнем полезности s, так что:

$$(u-Kr_{ij}) \geq s$$

или $u \geq s+Kr_{ii}$ (2)

Если A_i — общее количество предложений жилья в i-м секторе на расстоянии r_{ij} от j-го рабочего места, то вероятность проживания человека на этом уровне равна:

$$A_i \cdot P(s + Kr_{ii}) \tag{9}$$

Если общее количество лиц, занятых на j-м рабочем месте в центральном районе города, равно B_i , то:

$$T_{ij} \sim A_i \cdot B_j \cdot P(s + Kr_{ij})$$
 (10)
Сравнивая (4) и (10), замечаем, что:
 $a_i \cdot b_j \cdot e^{-\lambda \cdot C(r_{ij})} \sim A_i \cdot B_j \cdot P(s + Kr_{ij})$ или $C(r_{ij}) \sim \ln P(s + Kr_{ij}) + \ln(A_i \cdot B_j) - \ln ai \cdot bj$ (11)

Таким образом, всегда можно найти такую стоимость, при которой максимизация энтропии и полезности становятся эквивалентными. Проиллюстрируем эквивалентность конкретными примерами, найдя соответствующие функции стоимости.

Сначала предположим, что распределение полезности является отрицательной экспонентой:

$$f_i(x) = e^{-ax}, x \ge 0$$
 (12)
Тогда из (10):
 $T_{ij} \sim A_i \cdot B_j \int_{s+Kr_{ij}}^{\infty} e^{-ax} dx \sim \frac{A_i \cdot B_j e^{-a(s+Kr_{ij})}}{a}$

Два метода приводят к одному и тому же типу распределения, если стоимость проезда $C(r_{ij})$ имеет вид:

$$C(r_{ij}) \sim s + K r_{ij}$$
 (13)
Если $f_i(x) = \frac{e^{-x} \cdot x^{m-1}}{\Gamma(m)}, x \ge 0$

(14)

(15)

$$T_{ij} \sim A_i \cdot B_j \int_{s+Kr_{ij}}^{\infty} \frac{e^{-x} \cdot x^{m-1}}{\Gamma(m)} dx \sim A_i \cdot B_j e^{-(s+Kr_{ij})} (A_1 + A_2 r_{ij} + \cdots + A_m r_{ij}^{m-1}),$$

что приводит к распределению мультиплексирования энтропии, если берется:

$$C(r_{ij}) \sim [(s + Kr_{ij}) - \ln \sum_{\mu=1}^{m-1} A_{\mu} r^{\mu-1}]$$

$$f_i(x) = \frac{a^2}{x}, \ x \ge a,$$
 (16)

то получаем обобщенную гравитационную модель:

$$T_{ij} \sim A_i \cdot B_j \int_{s+Kr_{ij}}^{\infty} \frac{a^2}{x} dx \sim \frac{A_i \cdot B_j a^2}{\left(s+Kr_{ij}\right)^2}$$

Заметим, что, если взять функцию стоимости распределения максимальной энтропии это приведет к распределению полезности:

$$C(r_{ij}) \sim \ln(s + Kr_{ij}) \tag{17}$$

Распределение поездок: энтропийный подход (распределение Бозе-Эйнштейна и распределение Ферми-Дирака)

Рассмотрим вариант энтропии поездок основе распределений Эйнштейна и Ферми-Дирака и исследуем роль функции полезности.

Пусть T_{ij} будет числом поездок из iго сектора на *j*-е рабочее место, а имеющиеся ограничения или информация будут такими же, как (2) и (3).

Задача состоит в оценке T_{ii} на основе информации о стоимости и оценках (2) и (3). Применяем принцип максимальной энтропии с квантовой мерой энтропии.

$$\hat{S} = -\sum_{i=1}^{n} \sum_{j=1}^{m} T_{ij} \ln T_{ij} + a \sum_{i=1}^{n} \sum_{j=1}^{m} (1 + aTij) \ln(1 + aTij)$$
(18)

где a = +1 для энтропии Бозе-Эйнштейна;

a = -1 для энтропии Ферми-Дирака.

Максимизация энтропии распределения с учетом ограничений (2) и (3) приводит к:

$$T_{ij} = \frac{1}{a_{i} \cdot b_{j} \cdot e^{-\lambda \cdot C(r_{ij})} - a} \tag{19}$$

Значение a = 1 в (19) соответствует распределению Ферми-Дирака (разрешено не более одного пункта поездки для одного пункта назначения). Значение a = -1 в (19) соответствует распределению поездок по Бозе-Эйнштейну (неограниченному количеству конечных точек для каждого пункта назначения).

Распределение поездок: утилитарный подход

Выше приведено, что:

$$T_{ij} \sim A_i \cdot B_j \cdot P(s + Kr_{ij}),$$
 (20) а также

$$P(u) = \int_{u}^{\infty} f_i(x) \, dx$$

где $f_i(x)$ – некоторая функция полезности для і-го местоположения. Это может быть потенциальная функция *j*-го рабочего места или функция, которая зависит от полезности і-го происхождения (сектора-жилого помещения) и привлекательности і-го места работы. A_i и B_i – некоторые заданные значения, относящиеся к пункту отправления (месту проживания) и месту назначения ј (место работы). Рассмотрим математическую запись (10) и (19):

$$A_i \cdot B_j \cdot P(s + Kr_{ij}) \sim \frac{1}{a_i \cdot b_j \cdot e^{\lambda \cdot C(r_{ij})} - a}$$

$$a_i \cdot b_j \cdot e^{\lambda \cdot c(r_{ij})} \sim \frac{1}{A_i \cdot B_j \cdot P(s + Kr_{ij})} + a$$
 или же

$$C(r_{ij}) \sim \ln\left[\frac{a}{a_{i'}b_{j}} + \frac{1}{A_{i'}a_{i'}B_{j'}b_{j'}P(s+Kr_{ij})}\right] \quad (21)$$

которые могут сделать максимизацию энтропии и полезность эквивалентными. Эквивалентность будет проиллюстрирована некоторыми конкретными примерами.

Рассмотрим функцию полезности:
$$f_i(x) = \frac{ae^2}{(e^x + a)^2}, \ x > a \tag{22}$$

Тогда:

$$T_{ij} \sim A_i \cdot B_j \int_{s+Kr_{ij}}^{\infty} \frac{ae^2}{(e^x+a)^2} dx \sim A_i \cdot B_{jaes+Krij+a} = a Ai \cdot B_{jes+Krij+a}$$
(23)

Заметим, что при a = +1, полученное таким образом распределение (23) напоминает квантовое распределение поездок с $C(r_{ij}) \sim s + Kr_{ij}$.

Распределение полезности следует отрицательной экспоненте, поскольку $f_i(x) =$ e^{-ax} , $x \ge 0$. Получается, что T_{ij} имеет вид:

$$T_{ij} \sim \frac{A_i \cdot B_j e^{-a(s + Kr_{ij})}}{a} \tag{24}$$

что приводит к квантовому распределению поездок, если:

$$C(r_{ij}) \sim \ln(e^{a(s+Kr_{ij})} \pm 1) \tag{25}$$

В статье рассматриваются два подхода к задаче принятия решений в транспортной системе. Оба подхода основаны на понятиях энтропии полезности и математических подходах в случае распределения поездок. Статья носит теоретический характер, но не является чисто гипотетической, поскольку некоторые функции применялись в других моделях. Экспоненциальная функция полезности использовалась в задаче о распределении рисков. Выбор функции полезности (x) носит случайный характер. Он будет зависеть от различных экономических ситуаций, и его

успех будет также основываться на правильном выборе функции полезности. Ряд функций полезности (x) показал, как можно использовать метод максимальной полезности. Информационная энтропия имеет широкий диапазон применимости, энтропии Бозе-Эйнштейна и Ферми-Дирака успешно применяются в случае распределения ездок и распределения товаров соответственно. В этом исследовании демонстрируется эквивалентность между принципом максимальной полезности и максимальной энтропии, основанном на энтропиях Бозе-Эйнштейна и Ферми-Дирака.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Антонов, Д. В.** Основные принципы развития транспортных систем городов / Д.В. Антонов, О.А. Лебедева // Вестник Ангарской государственной технической академии. 2014. № 8. С. 149-155.
- 2. **Крипак, М. Н.** Оценка состояния улично-дорожной сети крупного города / М.Н. Крипак, О.А. Лебедева //Современные технологии. Системный анализ. Моделирование. 2016. № 3 (51). С. 171-174.
- 3. **Лебедева, О. А.** Транспортная инфраструктура как основополагающий фактор эффективного функционирования экономики страны / О.А. Лебедева, Ю.О. Полтавская, З.Н. Гаммаева, Т.В. Кондратенко // Сборник научных трудов Ангарского государственного технического университета. 2018. Т. 1. № 15. С. 125-130.
- 4. **Шаров, М. И.** Влияние транспортного зонирования на функционирование маршрутной сети города / М.И. Шаров, О.А. Лебедева // Современные технологии. Системный анализ. Моделирование. 2019. № 2 (62). С. 196-202.
- 5. **Полтавская, Ю. О.** Методы сбора данных о продолжительности движения на маршруте и требования к объему выборки / Ю.О. Полтавская //Вестник Ангарского государственного технического университета. 2018. № 12. С. 192-195.

- 6. **Лебедева**, **О. А.** Сравнительный анализ методов решения транспортных задач при оптимальном планировании перевозочного процесса / О.А. Лебедева., В.Е. Гозбенко, А.А. Пыхалов, Ю.Ф. Мухопад // Современные технологии. Системный анализ. Моделирование. 2020. № 3 (67). С. 134-139.
- 7. Полтавская, Ю. О. Моделирование продолжительности движения по маршруту с учетом характеристик уличнодорожной сети / Ю.О. Полтавская, О.А. Лебедева // В книге: Новые информационные технологии в исследовании сложных структур. материалы Тринадцатой Международной конференции. Томский государственный университет. Томск, 2020. С. 101-102.
- 8. **Mazumder, S. K.** Um entropy and utility in a transportation system / S. K. Mazumder // Yugoslav Journal of Operations Research 9, 1999, Number 1, pp. 27-34.
- 9. **Niedercorn, J. H.** An Economic Derivation of the 'Gravity Law' of Spatial Interaction: Reply / J.H. Niedercorn, B.V. Bechdolt // Journal of Regional Science 10, 1970, pp. 407–410.
- 10.**Beckmann, M.** The soft science of predicting travellor behavior / M. Beckmann // Transportation Planning and Technology 1, 1973, pp. 175–181.