Семёнов Иван Александрович,

к.т.н., доцент, Ангарский государственный технический университет, e-mail: semenovia.chem@yandex.ru

Бойчук Герман Романович,

магистрант кафедры XTT, Ангарский государственный технический университет, e-mail: gera-boychuk@mail.ru

СОВЕРШЕНСТВОВАНИЕ РАБОТЫ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ УСТАНОВКИ СЕЛЕКТИВНОЙ ОЧИСТКИ МАСЕЛ

Semenov I.A., Boychuk G.R.

IMPROVEMENT OF THE OPERATION OF TECHNOLOGICAL EQUIPMENT OF THE INSTALLATION OF SELECTIVE OIL CLEANING

Аннотация. Выполнен первичный анализ работы технологической установки селективной очистки масел фенолом. Определен перечень исходных данных и специализированного программного обеспечения, необходимых для построения адекватной математической модели процесса.

Ключевые слова: минеральные масла, экстракция, отпарка, фенол, математическое моделирование.

Abstract. The primary analysis of the operation of the process unit for the mineral-oil treatment with phenol was carried out. The list of initial data and specialized software necessary for constructing an adequate mathematical simulation of the process was determined.

Keywords: mineral oils, extraction, stripping, phenol, mathematical simulation.

Очистка минеральных масел является важным этапом в производстве высококачественных смазочных материалов. Основной целью очистки является удаление примесей и нежелательных компонентов, которые могут отрицательно сказаться на характеристиках и долговечности продукта.

Смазочные масла обычно очищают с помощью ряда процессов, предназначенных для удаления загрязняющих веществ, таких как парафины, асфальтены, а также вещества, содержащие в составе атомы серы, азота и других элементов. Одним из таких процессов является процесс экстракции из масел нежелательных компонентов различными селективными растворителями. Для проведения подобного процесса используют такие растворители как фенол, фурфурол, N-метилпирролидон и т.п. [1].

Многие промышленные процессы селективной очистки минеральных масел в качестве растворителя используют водофенольную смесь (фенол с добавлением воды). Такой экстрагент предпочтительнее других растворителей из-за его высокой растворяющей способности и высокой селективности по отношению к примесям. Однако использующийся при этом фенол является также опасным и токсичным химическим веществом, которое может представлять угрозу безопасности для экологии и персонала при его обращении и хранении.

Промышленная установка селективной очистки масел обычно состоит из разнообразного технологического оборудования, включающего в себя: экстрак-

тор, отпарные и ректификационные колонны, печи, теплообменное и насосное оборудование. Эффективность работы массообменных колонн на установке играет решающую роль для процесса в целом. Так, неэффективность внутренних контактных устройств экстракционной колонны приводит к необходимости перерасхода экстрагента на процесс очистки, плохая работа отпарных и ректификационных колонн — к потерям фенола в системе и перерасхода пара и других энергоносителей на стадиях регенерации растворителя и очистки рафината от остатков экстрагента. Объективная оценка работы массообменного оборудования позволяет при этом найти проблемные точки в работе установки, определить целесообразность и пути повышения эффективности внутренних контактных устройств колонн.

В рамках проведенной работы нами был выполнен анализ работы действующей промышленной установки селективной очистки масел водофенольным растворителем. Была выполнена первичная оценка эффективности внутренних контактных устройств экстракционной и отпарных колонн. Были определены основные точки потери фенола в системе.

Проведение более детального анализа и выработка шагов по совершенствованию работы оборудования при этом возможны на базе математической модели технологического процесса. Однако построению подобной модели должен предшествовать тщательный сбор различной технической информации, включающий в себя:

- 1. анализ и построение в виде потокового графа технологической схемы процесса;
- 2. сбор данных о конструкционных особенностях технологического оборудования;
- 3. оценка условий процесса и значений всех технологических параметров при штатном режиме работы действующей установки;
- 4. оценка имеющихся термодинамических свойств технологических потоков установки.

Современное математическое моделирование технологического процесса, такого как процесс селективной очистки масел, подразумевает использование специализированного программного обеспечения, такого как Aspen Hysys, Aspen Plus, PRO/II, ChemCAD, UniSim Design, DWSim и т.п. Каждый подобный программный продукт обладает своими достоинствами и недостатками, поэтому обоснованный выбор соответствующего пакета программ также должен предшествовать построению адекватной математической модели процесса.

ЛИТЕРАТУРА

1. **Казакова, Л.П., Крейн, С.Э.** Физико-химические основы производства нефтяных масел – М.: Химия, 1978. – 320 с.