Березин Сергей Яковлевич,

д.т.н., профессор, Забайкальский государственный университет, e-mail: berlog berezin2011@mail.ru

ПОВЫШЕНИЕ УСТОЙЧИВОСТИ РЕЗЬБОВЫХ СОЕДИНЕНИЙ НА ОСНОВЕ КРЕПЕЖНЫХ ДЕТАЛЕЙ С МОДИФИЦИРОВАННЫМ ПРОФИЛЕМ

Berezin S.Y.

INCREASING THE STABILITY OF THREADED CONNECTIONS BASED ON SELF-TAPPING PARTS WITH A MODIFIED PROFILE

Аннотация. Рассмотрены конструктивные особенности резьбовых соединений с нерегулярной геометрией витков различных участков посадочного конца крепежной резьбовыдавливающей детали. Представлены особенности модификации резьбовых профилей для создания удерживающих напряжений в контакте деталь-корпус. Проанализированы возможные технические свойства таких соединений.

Ключевые слова: крепежные детали, резьбовые соединения, нарезная часть, резьбовыдавливающий винт, нерегулярный шаг, вибростойкость, самоотвинчивание, стопорящие свойства, теоретический профиль, модифицированный профиль.

Abstract. The design features of threaded connections with irregular geometry of the turns of various sections of the landing end of the fastening self-tapping part are considered. The features of the modification of threaded profiles to create holding stresses in the contact of the part-body are presented. The possible technical properties of such compounds are analyzed.

Keywords: fasteners, threaded connections, threaded part, self-tapping screw, irregular pitch, vibration resistance, self-unscrewing, locking properties, theoretical profile, modified profile.

Конфигурацию витков резьбового соединения осуществляют следующими способами: смещением наружного, внутреннего и среднего диаметров, изменением углов боковых сторон профиля, смещением шага, изменением конфигурации боковых сторон. Возможные варианты этих действий описаны в работах [1, 2].

Модификации профилей резьбы подвергается как вся нарезная часть винтов, так и их отдельных участков. Участки формируются таким образом, чтобы они выполняли какие-то служебные функции. Геометрия участков формируется плоской накаткой на специальных секционированных плашках, профиль секций которых зеркален относительно профиля участков винта [3].

На рисунке 1 представлены конфигурации трех участков винта. Первый выдавливает резьбу и имеет угловое смещение влево относительно теоретического профиля (а). Витки второго участка имеют занижение по линии среднего диаметра, но с боковыми сторонами, соответствующими теоретическому профилю (б). В этом случае на участке создается натяг по правой боковой стороне (заштрихован). Это создает растягивающие напряжения σ_p в корпусе на стыке участков I-II. Профиль третьего, затяжного участка (в) имеет занижение по среднему диаметру и правую сторону, соответствующую деформирующему профилю, а левая сторона, в свою очередь, соответствует теоретическому профилю. В связи с этим, в области основания витков третьего участка образу-

ется натяг, создающий сжимающие напряжения в корпусе между витками II-III участков.

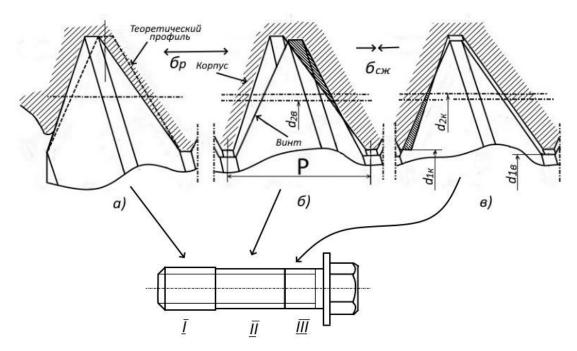


Рисунок 1 – Участки посадочной части резьбовыдавливающего винта: I – деформирующий участок; II – направляющая часть; III – участок затяжки.

Применение модифицированных резьб в различных областях практики решает много различных задач:

- повышение статической прочности (несущей способности) и осевой жесткости соединений;
- для создания в сопряжении сжимающих или растягивающих напряжений и формирования необходимого закона распределения напряжений по длине резьбового контакта;
 - повышение стопорящих свойств и вибростойкости соединений;
 - увеличения числа повторных сборок-разборок соединений.

ЛИТЕРАТУРА

- 1. **Березин, С.Я.** Особенности применения деталей с нерегулярным шагом в резьбовых соединениях // Сборка в машиностроении, приборостроении. 2019. № 7, с. 23 26.
- 2. **Березин, С.Я.** Научные основы технологии сборочнорезьбообразующих процессов. Монография / С. Я. Березин, Р. Е. Чумаков, В. Н. Леонов. Чита: ЗабГПУ, 2005. (Чита: Изд-во ЗабГПУ им. Н.Г. Чернышевского). 213 с.
- 3. **Березин, С.Я.** Исследование стопорящих свойств резьбообразующих деталей с модифицированным профилем и осевым натягом в соединениях /Современные технологии сборки: Матер. VII международ. науч.-техн. семинара. 21-22 окт. 2021. М.: Издательство Московский Политех. С. 40-48.