Муссакаев Олег Петрович,

к.т.н., доцент, Ангарский государственный технический университет, e-mail: oleg_agta@mail.ru

Чикалина Валентина Константиновна,

к.т.н., доцент, Ангарский государственный технический университет, e-mail: chikalina valentina@mail.ru

ПРИМЕНЕНИЕ ТЕХНОЛОГИИ МАГНИТНОЙ ЛЕВИТАЦИИ НА ТРАНСПОРТЕ Mussakaev O.P., Chikalina V.K. APPLICATION OF MAGNETIC LEVITATION TECHNOLOGY IN TRANSPORT

Аннотация. В работе рассмотрены перспективы применения принципа магнитной левитации в процессе перевозок. Указаны основные достоинства и недостатки использования данной технологии.

Ключевые слова: магнитное поле, подшипник, подвеска.

Abstract. The paper considers the prospects of applying the principle of magnetic levitation in the process of transportation. The main advantages and disadvantages of using this technology are indicated.

Keywords: magnetic field, bearing, suspension.

Известно, что магнитная левитация — это технология, позволяющая поднимать объекты в воздух с помощью магнитного поля. Сам термин «левитация» происходит от английского «levitate», который можно перевести как «парить, подниматься в воздух» [1]. Фактически же данное физическое явление позволяет преодолеть гравитацию без применения реактивной тяги или аэродинамики. В реальности парение объекта достигается только путем непосредственного воздействия на него магнитного поля.

Одним из самых масштабных направлений использования данной технологии является современный железнодорожный транспорт на магнитной подушке. Технология «маглев» — это способ транспортировки, который подвешивает, направляет и приводит в движение транспорт, в основном поезда, используя магнитную левитацию. Поезд на магнитной подушке — это состав, который удерживается над дорожным полотном и движется силой электромагнитного поля. В основу «маглева» положено базовое свойство магнитов: одинаковые полюса отталкиваются, а разные – притягиваются. Поезд такого типа движется очень быстро и тихо, так как не имеет колес, которые создают трение и стук. Достоинствами этой технологии являются: высокая скорость; экономичность, хорошая износостойкость; низкие эксплуатационные затраты; энергоэффективность; экологичность, низкий уровень шума; пожаробезопасность. Среди недостатков можно отметить: высокую стоимость создания и обслуживания колеи; рельсовый путь не пригоден для других видов поездов; наличие квалифицированного персонала; необходимость экранирования пассажиров от вредного воздействия магнитного поля.

Повышенный интерес также представляет использование бесконтактных

магнитных подшипников. Основными элементами системы активного магнитного подвеса являются магнитный подшипник и автоматическая система электронного управления. Электромагниты действуют на ротор и подчинены электронной системе контроля. Ротор магнитного подшипника оснащен ферромагнитными пластинами, на которые действует удерживающее магнитное поле от катушек статора. При этом ротор оказывается подвешен в центре статора, а индуктивные датчики следят за положением ротора. Любое отклонение от правильного положения приводит к появлению сигнала, который подается на контроллер. А он, в свою очередь, возвращает ротор в нужное положение. Радиальный зазор может составлять от 0,5 до 1 мм. Для надежного удержания ротора машины во время ее остановки или в момент отказа системы удержания используются страховочные шариковые подшипники. В качестве недостатков можно указать следующие: необходимость страховочных подшипников; сложность системы автоматического управления; необходимость системы охлаждения; высокую материалоемкость.

Применительно к автотранспорту перспективным можно считать применение электромагнитной подвески. Она представляет собой устройство в виде стойки на каждое колесо, заменяющее пружину и амортизатор. Управляется она электронным блоком и предназначена для более высокой плавности хода автомобиля. Отличие магнитной подвески от классической заключается в возможности работы при полном отсутствии пружин, торсионов, стабилизаторов, амортизаторов и других элементов. Функции этих компонентов выполняют электромагнитные клапаны или магнитно-реологическая жидкость. Хотя некоторые подвески оснащены пружинами и амортизаторами на случай, если выйдет из строя автоматическая система управления. На данный момент магнитная подвеска применяется экспериментально и только в электромобилях. Такая подвеска позволяет водителю отслеживать все показатели положения кузова и колес в режиме реального времени. Преимущества магнитной подвески: высокая плавность хода автомобиля; устойчивость автомобиля при движении на больших скоростях; высокий уровень комфорта и безопасности; рациональное использование энергетических ресурсов машины. Главным недостатком такой подвески является лишь ее высокая стоимость.

Таким образом, внедрение принципа магнитной левитации, безусловно, является перспективным направлением в плане совершенствования процесса перевозок и позволяет добиться нового качества управления транспортными средствами. Данная технология обеспечивает повышенный комфорт, хорошую управляемость и безопасность грузовых и пассажирских перевозок.

ЛИТЕРАТУРА

1. Антонов Ю.Ф., Зайцев А.А. Магнитолевитационная транспортная технология. – М.: Физматлит, 2014. – 476 с.