KEY COMPONENTS AND MODELS OF DIGITALIZATION OF THE POWER INDUSTRY
Abstract and keywords
Abstract (English):
The influence of the development of digital technologies on the electric power industry in modern conditions aimed at decarbonization is considered. The key components in the digitalization of the electric power industry and the emergence of new models of the electric power industry are identified

Keywords:
digital technologies, electric power industry, decarbonization, components, digitalization of the electric power industry
Text
Publication text (PDF): Read Download

Развитие цифровых технологий в современном мире происходит нарастающими темпами. В будущем они затронут все отрасли производства и будут способствовать появлению новых видов бизнеса. Отвечая на требования общества и общемировой тренд на декарбонизацию, трансформируется и электроэнергетика. Важными факторами, способствующими изменениям в электроэнергетике, станут цифровые технологии и технологии обработки больших данных.

Технологии, которые окажут наибольшее влияние на трансформацию энергетической сферы, включают продвинутую аналитику данных, в том числе искусственный интеллект (ИИ), облачные и квантовые вычисления, роботизацию, носимые устройства и пр. Они затронут все сегменты отрасли, причем, как ожидается, наибольшее влияние они окажут на электроэнергетику, как передовую и динамично развивающуюся отрасль промышленности.

Навыки, связанные с цифровыми технологиями, вероятно, будут одними из самых востребованных на рынке, но потребуются и другие нетехнические компетенции, такие как решение проблем в условиях неопределенности и управление рисками.

Мировая энергетика трансформируется, отвечая на запросы общества и усиление климатических требований. В 2015 году ООН приняла повестку дня в области устойчивого развития до 2030 года. Программа состоит из 17 глобальных целей, в том числе цели, лежащие в области электроэнергетики. Международное энергетическое агентство отметило основные изменения, которые потребуется осуществить для достижения этих целей. Основной вектор развития электроэнергетики на ближайшие десятилетия будет направлен на сокращение выбросов углеводородов в атмосферу с целью достижения нулевых выбросов к 2070 году. Согласно прогнозам, зафиксированным в сценарии устойчивого развития ООН, в 2040 году, несмотря на рост мировой экономики в среднем на 3,4 % в год, мы увидим существенное снижение спроса на углеводородную энергетику: рынок нефти объемом в 65  70 миллионов баррелей в день к 2040 году вернется к уровню начала 1990‑х годов [1, 2].  При этом произойдет значительное перераспределение инвестиций от ископаемого топлива к возобновляемым источникам энергии: инвестиции в ископаемое топливо сократятся почти на 50 %, а расходы на возобновляемые источники энергии увеличатся в 2,5 раза.

Одним из наиболее важных технологических сдвигов в энергетической отрасли, который приведет к значительному повышению эффективности и рентабельности, станет цифровая трансформация. Попытки осуществления цифровой трансформации предпринимались еще c середины 90‑х годов, но прорыв в этой области стал возможен только с появлением и развитием таких технологий как, промышленный интернет вещей (IIoT), обработка больших данных (Big Data) и когнитивные вычисления (Сognitive Сomputing).

В широком смысле цифровизация – это преобразование информации и результатов измерений в численный формат, после чего их можно обрабатывать, хранить и передавать в электронном виде. Цифровые технологии в электроэнергетике предполагают следующие ключевые компоненты:

  1. Глубокую аналитику данных, которая включает в себя прогнозную аналитику, большие данные и интеллектуальный анализ данных на базе машинного обучения и искусственного интеллекта. Глубокий анализ данных и искусственный интеллект уже влияют на то, как энергетические компании принимают решения, и в будущем изменят «status quo» для всех участников цепочки поставок в энергетической отрасли.
  2. Дополненную, ассистирующую и виртуальную реальность (AR/VR) на базе которых можно создавать различные экспертные системы, интерактивные электронные технические руководства, выводить информацию о режимах работы оборудования, включая телеметрию. В результате внедрения AR/VR-технологий повышается производительность труда за счет сокращения времени при выполнении операций, времени на подготовку к операциям, оптимизации перемещений персонала.
  3. Оцифровку бизнес-­процессов, что позволит оптимально перераспределить персонал по проектам, сократить количество ошибок и аварий и обеспечить прозрачность коммерческих решений.
  4. Облачные вычисления – предоставление сетевого доступа по требованию к некоторому общему фонду конфигурируемых вычислительных ресурсов (серверам, хранилищам, базам данных, программному обеспечению). Облачные вычисления позволяют более быстро внедрять инновации, обеспечивают гибкость ресурсов и экономию за счет роста масштабов. Облачные технологии станут высокоценным ресурсом и для покупателей энергоресурсов, позволяя фирмам реализовывать инициативы, направленные на привлечение потребителей, например, способствуя созданию «зеленого» образа компании.
  5. Кибербезопасность – защита систем, сетей и программ от цифровых атак. Обычно «кибератаки» нацелены на получение доступа к данным, изменение или уничтожение конфиденциальной информации, нарушение бизнес-­процессов. В качестве примера можно привести кибератаку на крупный энергетический объект в Норвегии в 2019 году. Жертвой атаки стала металлургическая компания Hydro. На восстановление ее работоспособности потребовалось несколько недель, а ущерб составил около 70 млн долл.
  6. Блокчейн и распределенные реестры – совместно используемые и распределенные структуры данных или реестры, которые могут безопасно хранить информацию о цифровых транзакциях без использования центральной точки управления. Блокчейн и технология распределенного реестра могут использоваться для риск-менеджмента или торговли «зелеными» сертификатами.
  7. Интернет вещей (IoT) и промышленный интернет вещей (IIoT) – это обширная сеть подключенных вещей и людей, которые собирают данные и обмениваются данными об окружающей среде, о самом устройстве и о том, как оно используется.
  8. Цифровой двойник – виртуальная копия технического объекта, воспроизводящая и задающая структуру, состояние и поведение объекта в реальном времени. Цифровой двой­ник является ключевым базовым элементом высокотехнологичной системы управления. К числу высокотехнологичных объектов, управление которыми целесообразно организовывать на базе технологии цифровых двой­ников, относятся, например, современные системы распределенной энергетики, включающие разнообразные энергоприемники, локальное генерирующее оборудование и накопители электроэнергии.
  9. Дроны и беспилотные летательные аппараты (БПЛА) – беспилотные транспортные средства, в основе работы которых лежат такие технологии, как компьютерное зрение и искусственный интеллект. Сегодня БПЛА используются, например, для плановой диагностики и инспекции состояния ЛЭП, проведения аварийно-­восстановительных работ, создания цифровых и кадастровых планов, сопровождения работ по строительству и реконструкции ЛЭП и мн. др.
  10. Робототехнику, которая существенным образом меняет энергетическую отрасль, трансформируя такие процессы, как производство, эксплуатация и диагностика различного оборудования.

Для генерирующих компаний цифровизация открывает новые возможности в следующих четырех областях [3]:

  1. Управление жизненным циклом активов: технологические решения могут обеспечивать дистанционное управление или профилактическое обслуживание в режиме реального времени, приводя таким образом к продлению жизненного цикла актива или достижению лучшей производительности генерирующих, передающих или распределительных активов и инфраструктуры.
  2. Оптимизация энергосети: оптимизировать работу сетей можно за счет балансировки нагрузки в реальном времени, управления сетью, сквозного подключения, достигаемого путем подключения активов, оборудования и устройств, а также расширенных возможностей мониторинга сети.
  3. Интегрированный подход к обслуживанию клиентов: объединение инновационных цифровых продуктов и услуг, относящихся к производству энергии и управлению энергопотреблением, в единую интегрированную систему обслуживания клиентов.
  4. Персонализация электроэнергии – персонализированные подключаемые услуги за пределами цепочки создания стоимости электроэнергии, адаптирующиеся к потребителю.

Кроме того, цифровизация электроэнергетики приведет к появлению совершенно новых бизнес-­моделей с акцентом на экологически чистую энергию («зеленую» энергию), поддержку электромобилей, а также на домохозяйства и бизнес. Появятся такие новые модели электроэнергетики, как [4-6]:

  1. Виртуальная энергокомпания (Virtual Utility) – компания, которая собирает энергию из различных распределенных систем и действует как посредник на рынках энергетики.
  2. Разработчик энергосистемы (Grid Developer) – коммунальные компании в данной модели приобретают, разрабатывают, строят, владеют и обслуживают линии электропередачи, которые соединяют децентрализованные генераторы с операторами местных распределительных систем.
  3. Сетевой менеджер (Network Manager) – управляет распределительными устройствами и предоставляет доступ к своим сетям вырабатывающим электроэнергию предприятиям, компаниям, владеющим соединительными линиями и поставщикам розничного обслуживания.

В краткосрочной перспективе цифровая трансформация энергетики сможет увеличить доходы компании в отрасли на 3 ­– ­4 % в год. Основной рост доходов – в генерации и распределении – будет достигнут за счет анализа всех доступных данных, автоматизации бизнес-­процессов и локального внедрения цифровых решений на критических объектах инфраструктуры. Важно понимать, что цифровая трансформация электроэнергетики – это цифровизация всех отраслей топливно-энергетического и минерально-сырьевого комплекса: электроэнергетики, нефтегазового комплекса (добыча, транспорт и переработка) и угольной промышленности.

References

1. Noskova, T.N. Didaktika cifrovoy sredy: monografiya / T.N. Noskova. - SPb.: Izd-vo RGPU im. A.I. Gercena, 2020. - 384 s.

2. Akatkin, Yu.M. Cifrovaya transformaciya gosudarstvennogo upravle-niya: Datacentichnost' i semanticheskaya interoperebel'nst' / Yu.M. Akatkin, E.D. Yasinovskaya. - M.: Izd-vo URSS, 2019. - 724 s. ISBN 978-5-9710-6185-4.

3. Popova, S.A. Cifrovaya obrazovatel'naya sreda: ishodnye ponyatiya i konceptual'noe proektirovanie / S.A. Popova. - M.: IMC, 2021. - 248 s.: ris., tabl. - (Biblioteka nauchnyh shkol NANO VO "IMC"). - Bibliogr.: s. 226-248. - ISBN 978-5-907445-63-5

4. Konovalov Yu.V., Zasukhina O.A. Cloud technologies in energy. Journal of Physics: Conference Series, 1680 (2020), stat'ya № 012024, [Elektronnyy resurs], URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098553884&doi=10.1088%2f1742-6596%2f1680%2f1%2f012024&part,DOIhttps://doi.org/10.1088/1742-6596/1680/1/012024, (data obrascheniya: 18.05.2022).

5. Novosti «Cifrovoy ekonomiki», [Elektronnyy resurs], URL: https://data-economy.ru/news, (data obrascheniya: 08.05.2023).

6. Mozohin A.E., Shvedenko V.N. 2019 Analiz napravleniy razvitiya cifrovizacii otechestvennyh i zarubezhnyh energeticheskih sistem Nauchno-tehnicheskiy vestnik informacionnyh tehnologiy, mehaniki i optiki. 2019. T. 19. № 4. pp 657-672 Preprint doi:https://doi.org/10.17586/2226-1494-2019-19-4-657-672.

Login or Create
* Forgot password?