Россия
Математически смоделирован процесс десорбции сероводорода из фенольно-сульфидной воды в слое насадки. Получена графическая зависимость высоты слоя насадки от расхода инертного носителя – азота. Данная математическая модель может быть использована при расчетах промышленных десорбционных колонн
математическая модель, десорбция, сероводород, фенольно-сульфидная вода, контакт-ные устройства, поверхность массопередачи
В настоящее время для проведения массообменных процессов в системах «газ-жидкость» используются различные конструкции насадок: кольца Рашига, Палля, седла Берля, «Инталокс», хордовая насадка и т.д. По существующей классификации, насадки можно отнести либо к регулярной (правильно уложенной), либо к нерегулярной (засыпанной навалом) [1-2]. Нерегулярную насадку применяют в процессах, протекающих под давлением или в условиях неглубокого вакуума. Эта насадка обладает рядом преимуществ: во-первых, практически отсутствует проблема выбора материала – насадку можно изготовить из металлов, полимеров, керамики (для обработки агрессивных сред); во-вторых, технология изготовления, транспортирования и монтажа существенно проще регулярной. По конструктивным признакам нерегулярную насадку можно разделить на кольца и седла, хотя в отечественной и зарубежной практике используются насадочные тела и другой формы. Одним из перспективных направлений является применение регулярных насадок. Регулярная насадка отличается от нерегулярной меньшими гидравлическими сопротивлениями, допускает более высокие нагрузки по газу и жидкости, и обладает большей поверхностью контакта фаз [3]. По конструкции регулярная насадка может представлять собой пакет гофрированных стальных листов попарно соединенных друг с другом – плоскопараллельная насадка или пакеты, изготовленные из сетки и т.д. К регулярной насадке можно отнести крупные кольца Рашига, например размером 100´100´10 мм, размещенные правильными рядами на опорных конструкциях колонны (рис. 1).
В работе поставлена цель смоделировать процесс десорбции сероводорода из фенольно-сульфидной воды в слое регулярной насадки в виде колец Рашига размером 100´100´10 мм при различном расходе отдувочного газа. Данная десорбционная колонна размещена в цехе 86/57 производства нефтехимии АО «Ангарская нефтехимическая компания». Колонна выполнена диаметром 1600 мм, сверху в колонну при помощи разбрызгивающего устройства подается фенольно-сульфидная вода, содержащая сероводород. Снизу колонны подается отдувочный газ – азот. Сероводород из жидкой фазы переходит в поток инертного носителя и выводится через верхний штуцер. Очищенная фенольно-сульфидная вода выходит через нижний штуцер. В расчетах принимался расход фенольно-сульфидной воды 80000 кг/ч, концентрация сероводорода в воде на входе в колонну 791 мг/дм3, на выходе – 35 мг/дм3. Давление в колонне избыточное – 0,015 МПа, температура воды на входе в колонну составляет не более 100 °С, расход отдувочного газа не более 795 м3/ч. Азот, подаваемый в колонну, чистый и не содержит сероводорода. Регулярная насадка в виде колец Рашига размером 100´100´10 мм имеет следующие характеристики: удельная поверхность насадки = 60 м2/м3, свободный объем
= 0,72 м3/м3, эквивалентный диаметр
dэ = 0,048 м, насыпная плотность 670 кг/м3, число штук в м3 –1050 [3].
Рисунок 1 – Кольца Рашига |
В процессе моделирования десорбции сероводорода из фенольно-сульфидной воды определялась требуемая высота слоя насадки при различных расходах отдувочного газа. При моделировании принималось допущение, что линия равновесия – это прямая линия. Уравнение линии равновесия, в этом случае, имеет вид [4-5]:
,
где: – мольная масса компонента (сероводорода), кг/кмоль;
– мольная масса инертного носителя (азот), кг/кмоль; y – коэффициент, Па; P – абсолютное давление в колонне, Па.
Расход отдувочного газа определялся из уравнения материального баланса для процесса десорбции [3]:
,
где: – количество десорбированного сероводорода, кг/ч;
– расход инертного носителя (азота), кг/ч;
– расход фенольно-сульфидной воды, кг/ч.
Отсюда минимальный расход азота:
,
где: ,
– относительные массовые концентрация сероводорода в фенольно-сульфидной воде на входе и выходе из колонны соответственно, кг/кг;
– равновесная концентрация сероводорода в газе на выходе из колонны, кг/кг;
– начальная концентрация сероводорода в азоте на входе в колонну, кг/кг.
Действительный расход азота принимался с 20 % запасом:
.
Конечная концентрация сероводорода в азоте на выходе из колонны рассчитывалась по формуле [3]:
.
Средняя движущая сила процесса десорбции [3]:
,
где: ,
– движущая сила процесса вверху и внизу колонны соответственно, кг/кг.
Рабочая скорость газа при существующем диаметре колонны d = 1,6 м определится по формуле:
где – плотность азота, кг/м3.
Плотность орошения рассчитывалась по формуле [3]:
,
где – плотность фенольно-сульфидной воды, кг/м3.
Оптимальная плотность орошения определяется по формуле:
,
где = 0,158 – постоянный коэффициент для абсорбции (десорбции). Отношению
соответствует коэффициенту смоченности насадки
= 1,0.
Для регулярных насадок коэффициент массоотдачи в газовой фазе находится из критериального уравнения [3]:
где – высота элемента насадки, м;
– диффузионный критерий Нуссельта для газовой фазы. Откуда
где: – коэффициент диффузии сероводорода в газовой фазе, м2/с;
– критерий Рейнольдса для газовой фазы;
– диффузионный критерий Прандтля для газовой фазы.
Критерий Рейнольдса для газовой фазы рассчитывался по формуле [3]:
,
где – коэффициент динамической вязкости азота, Па·с.
Критерий Прандтля для газовой фазы [3]:
.
Коэффициент массоотдачи в жидкой фазе находим из обобщенного критериального уравнения, пригодного как для регулярных, так и для нерегулярных насадок:
где , откуда
,
где: – коэффициент диффузии сероводорода в воде, м2/с;
– приведенная толщина стекающей пленки воды, м;
– модифицированный критерий Рейнольдса для стекающей по насадке жидкости;
– диффузионный критерий Прандтля для жидкой фазы.
Коэффициент массопередачи по газовой фазе рассчитывался по формуле [3]:
,
где k – угол наклона линии равновесия.
Поверхность массопередачи определялась по формуле [3]:
.
Высота слоя насадки определялась по двум способам: через коэффициент массопередачи и через высоту единиц переноса. По первому способу высота слоя насадки:
.
По второму способу – через высоту единицы переноса (ВЕП):
,
где: – общая высота единицы переноса, м;
– общее число единиц переноса.
Расчет высоты слоя насадки по первому и второму методу показал хорошую сходимость результатов, например, при расходе отдувочного газа, определенного из материального баланса, 129,4 кг/ч, высота слоя насадки по первому методу составила – 4,9 м, а по второму методу – 4,2 м. Далее высота слоя насадки принималась как среднеарифметическое значение результатов расчетов по двум методам с 25 % запасом и по результатам расчетов при расходе отдувочного газа 129,4 кг/ч составила 5,7 м.
С увеличением расхода азота может быть уменьшена высота слоя насадки, что особенно важно при моделировании процесса десорбции в существующих колоннах, имеющих определенные диаметр и высоту [6-8]. На рис. 2 приведена зависимость высоты слоя насадки от расхода отдувочного газа (азота). Расчеты выполнены в интервале нагрузок по отдувочному газу от 129,4 кг/ч до 834,7 кг/ч (795 м3/ч).
Рисунок 2 – Зависимость высоты слоя насадки от расхода отдувочного газа
Характер кривой на рис. 2 можно объяснить тем, что с увеличением расхода отдувочного газа возрастает движущая сила процесса десорбции и коэффициент массоотдачи для газовой фазы, а как следствием является уменьшение требуемой высоты слоя насадки. По данной математической модели может быть определена и высота слоя нерегулярной кольцевой насадки.
1. Рамм, В.М. Абсорбция газов. Изд. 2-е, переработ. и доп. / В.М. Рамм. - М: Химия, 1976. - 656 с.
2. Рыбалко, Л.И. Процессы и аппараты химической технологии. Массообменные процессы: учебное пособие по специальности 240801 "Машины и аппара-ты химических производств" с примерами решения задач / Л.И. Рыбалко, Е.В. Подоплелов, А.И. Дементьев. - АнГТУ: Ангарск, 2009. - 134 с.
3. Рыбалко, Л.И. Расчет абсорбционных аппаратов : учебное пособие по курсовому проектированию процессов и аппаратов химической технологии / Л.И. Рыбалко, Е.В. Подоплелов, Л.В. Щукина, Д.П. Свиридов. - АнГТУ: Ангарск, 2012. - 77 с.
4. Бобылев, Е.П. Проектирование абсорбционной колонны для улавливания газообразного аммиака из железнодорожных цистерн / Е.П. Бобылев, Е.В. Подоплелов, А.И. Дементьев // Современные технологии и научно-технический про-гресс. - 2020. - Т. 1. - № 7. С. 25-26.
5. Подоплелов, Е.В. Проектирование десорбционной колонны установки водной отмывки технологических газов от аммиака и аминов / Е.В. Подоплелов, А.И. Де-ментьев, М.Н. Король // Сборник научных трудов Ангарского государственного технического университета. - 2018. - Т. 1. - № 15. - С. 32-35.
6. Подоплелов, Е.В. Повышение эффективности установки водной отмывки технологических газов от аммиака и аминов / Е.В. Подоплелов, А.И. Дементьев, М.Н. Король // Современные технологии и научно-технический прогресс. - 2018. - Т. 1. - С. 34-35.
7. Бальчугов, А.В. Повышение эффективности работы абсорберов схемы утилизации "хвостовых" газов установки 71/72 цеха 39/71 / А.В. Бальчугов, Е.В. Подоплелов, Д.А. Дубровский, В.Ю. Рах-манин, А.В. Подоплелова // Вестник Ангарской государственной технической академии. - 2013. - № 7. - С. 100-103.
8. Бальчугов, А.В. Анализ работы и способы повышения эффективности абсорбционной установки для очистки технологических газов от аммиака и аминов / А.В. Бальчугов, А.В. Подоплелова, В.Ю. Рахманин, Е.В. Подоплелов // Вестник Ангарской государственной технической академии. - 2014. - № 8. - С. 71-77.